OFFSET
1,1
COMMENTS
Discriminant is -448. See A139643 for more information.
Primes of the form 8*n + 1 which cannot be expressed as 7*k - 1, 7*k - 2, or 7*k - 4. a(n)^3 == 1 (mod 56). - Gary Detlefs, Jan 26 2014
The primes are congruent to {1, 9, 25} (mod 56).
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi).
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MAPLE
f:=n-> ceil((8*n+1)/7)-(8*n+1): for n from 1 to 350 do if isprime(8*n+1) and f(n)<>1 and f(n)<>2 and f(n)<>4 then print(8*n+1) fi od. # Gary Detlefs, Jan 26 2014
MATHEMATICA
QuadPrimes2[1, 0, 112, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(3000) | p mod 56 in {1, 9, 25}]; // Vincenzo Librandi, Jul 28 2012
(Magma) k:=112; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, Apr 29 2008
STATUS
approved