This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139093 Expansion of phi(q) * phi(-q^2) in powers of q where phi() is a Ramanujan theta function. 4
 1, 2, -2, -4, 2, 0, -4, 0, 2, 6, 0, -4, 4, 0, 0, 0, 2, 4, -6, -4, 0, 0, -4, 0, 4, 2, 0, -8, 0, 0, 0, 0, 2, 8, -4, 0, 6, 0, -4, 0, 0, 4, 0, -4, 4, 0, 0, 0, 4, 2, -2, -8, 0, 0, -8, 0, 0, 8, 0, -4, 0, 0, 0, 0, 2, 0, -8, -4, 4, 0, 0, 0, 6, 4, 0, -4, 4, 0, 0, 0, 0, 10, -4, -4, 0, 0, -4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, -2, -12, 2, 0, -8, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). a(n) is nonzero if and only if n is in A002479. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3) in powers of q. Euler transform of period 4 sequence [ 2, -5, 2, -2, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 8^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A112603. G.f.: Product_{k>0} (1 - x^(2*k))^2 * (1 + x^(2*k-1))^2 / (1 + x^(2*k)). a(8*n + 5) = a(8*n + 7) = 0. a(n) = (-1)^n * A082564(n). a(2*n) = A133692(n). a(2*n + 1) = 2 * A125095(n). a(4*n) = a(8*n) = A033715(n). a(8*n + 1) = 2 * A112603(n). a(8*n + 3) = -4 * A033761(n). EXAMPLE G.f. = 1 + 2*q - 2*q^2 - 4*q^3 + 2*q^4 - 4*q^6 + 2*q^8 + 6*q^9 - 4*q^11 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^2], {q, 0, n}]; (* Michael Somos, Aug 29 2014 *) a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^7 / (QPochhammer[ q]^2 QPochhammer[ q^4]^3), {q, 0, n}]; (* Michael Somos, Feb 18 2015 *) a[ n_] := If[ n < 1, Boole[n == 0], 2 (-1)^Quotient[n, 2] Sum[ JacobiSymbol[ -2, d], {d, Divisors @ n}]]; (* Michael Somos, Feb 18 2015 *) PROG (PARI) {a(n) = if( n<1, n==0, 2 * (-1)^(n\2) * sumdiv(n, d, kronecker( -2, d)))}; (PARI) {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3), n))}; (MAGMA) A := Basis( ModularForms( Gamma1(32), 1), 105); A[1] + 2*A[2] - 2*A[3] - 4*A[4] + 2*A[5] - 4*A[7] + 2*A[9] + 6*A[10] - 4*A[12]  + 4*A[13] + 4*A[16]; /* Michael Somos, Aug 29 2014 */ CROSSREFS Cf. A002479, A033715, A033761, A082564, A112603, A125095, A133692. Sequence in context: A133692 A033715 A082564 * A080918 A033758 A033750 Adjacent sequences:  A139090 A139091 A139092 * A139094 A139095 A139096 KEYWORD sign AUTHOR Michael Somos, Apr 08 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 05:18 EDT 2019. Contains 324145 sequences. (Running on oeis4.)