login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137513 Triangle read by rows: the coefficients of the Mittag-Leffler polynomials. 4
1, 0, 2, 0, 0, 4, 0, 4, 0, 8, 0, 0, 32, 0, 16, 0, 48, 0, 160, 0, 32, 0, 0, 736, 0, 640, 0, 64, 0, 1440, 0, 6272, 0, 2240, 0, 128, 0, 0, 33792, 0, 39424, 0, 7168, 0, 256, 0, 80640, 0, 418816, 0, 204288, 0, 21504, 0, 512, 0, 0, 2594304, 0, 3676160, 0, 924672, 0, 61440, 0, 1024 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Previous name was: Triangle read by rows: coefficients of the expansion of a polynomial related to the Poisson kernel: p(t,r) = ((1 + t)/(1 - t))^x: r*Exp(i*theta) -> t.

General relation is that Poisson's kernel is the real part of this type of function (page 31 Hoffman reference).

The row polynomials of this table are the Mittag-Leffler polynomials M(n,t), a polynomial sequence of binomial type [Roman, Chapter 4, Section 1.6]. The first few values are M(0,t) = 1, M(1,t) = 2*t, M(2,t) = 4*t^2, M(3,t) = 4*t+8*t^3. The polynomials M(n,t/2) are the (unsigned) row polynomials of A049218. - Peter Bala, Dec 04 2011

Also the Bell transform of the sequence "a(n) = 2*n! if n is even else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

REFERENCES

Kenneth Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1962, page 30.

Thomas McCullough, Keith Phillips, Foundations of Analysis in the Complex Plane, Holt, Reinhart and Winston, New York, 1973, 215.

S. Roman, The Umbral Calculus: Dover Publications, New York (2005).

LINKS

Table of n, a(n) for n=1..66.

Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).

H. Bateman, The Polynomial of Mittag-Leffler. PNAS, 26 (8), 1940, 491-496.

Eric Weisstein's World of Mathematics, Mittag-Leffler Polynomial

FORMULA

From Peter Bala, Dec 04 2011: (Start)

T(n,k) = (-1)^k*(n-1)!*Sum{i=k..n} (-2)^i*binomial(n,i)/(i-1)!*|Stirling1(i,k)|.

E.g.f.: Sum {n>=0} M(n,t)*x^n/n! = exp(t*log((1+x)/(1-x)) = ((1+x)/(1-x))^t = exp(2*t*atanh(x)) = 1 + (2*t)*x + (4*t^2)*x^2/2! + (4*t+8*t^3)*x^3/3! + ....

M(n,t) = (n-1)!*Sum {k = 1..n} k*2^k*binomial(n,k)*binomial(t,k), for n>=1.

Recurrence relation: M(n+1,t) = 2*t*Sum {k = 0..floor(n/2)} (n!/(n-2*k)!)* M(n-2*k,t), with M(0,t) = 1.

The o.g.f. for the n-th diagonal of the table is a rational function in t, given by the coefficient of x^n/n! in the expansion (with respect to x) of the compositional inverse (x-t*log((1+x)/(1-x)))^(-1) = x/(1-2*t) + 4*t/(1-2*t)^4*x^3/3! + (48*t+64*t^2)/(1-2*t)^7*x^5/5! + ...; for example, the o.g.f. for the fifth subdiagonal is (48*t+64*t^2)/(1-2*t)^7 = 48*t + 736*t^2 + 6272*t^3+ .... See the Bala link.

(End)

The row polynomials satisfy M(n, t+1) - M(n, t-1) = 2*n*M(n, t)/t. - Peter Bala, Nov 16 2016

EXAMPLE

{1},

{0, 2},

{0, 0, 4},

{0, 4, 0, 8},

{0, 0, 32, 0, 16},

{0, 48, 0, 160, 0, 32},

{0, 0, 736, 0, 640, 0, 64},

{0, 1440, 0, 6272, 0, 2240, 0, 128},

{0, 0, 33792, 0, 39424, 0, 7168, 0, 256},

{0, 80640, 0, 418816, 0, 204288, 0, 21504, 0, 512},

{0, 0, 2594304, 0, 3676160,0, 924672, 0, 61440, 0, 1024}

MAPLE

A137513_row := proc(n) `if`(n=0, 1, 2*x*hypergeom([1-n, 1-x], [2], 2));

PolynomialTools[CoefficientList](expand(n!*simplify(%, hypergeom)), x) end:

seq(A137513_row(n), n=0..10): ListTools[FlattenOnce]([%]); # Peter Luschny, Jan 28 2016

# Alternatively, using the function BellMatrix defined in A264428:

BellMatrix(n -> `if`(n::odd, 0, 2*n!), 9); # Peter Luschny, Jan 28 2016

MATHEMATICA

Clear[p, f, g] p[t_] = ((1 + t)/(1 - t))^x; Table[ ExpandAll[n! * SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[n!*SeriesCoefficient[ FullSimplify[Series[p[t], {t, 0, 30} ]], n], x], {n, 0, 10}]; Flatten[a]

MLP[n_] := Sum[Binomial[n, k]*2^k*FactorialPower[n - 1, n - k]* FactorialPower[x, k] // FunctionExpand, {k, 0, n}]; Table[ CoefficientList[MLP[n], x], {n, 0, 9}] // Flatten (* or: *)

MLP[0] = 1; MLP[n_] := 2x*n!*Hypergeometric2F1[1-n, 1-x, 2, 2]; Table[ CoefficientList[MLP[n], x], {n, 0, 9}] // Flatten (* or: *)

BellMatrix[If[OddQ[#], 0, 2*#!]&, 9] (* in triangular matrix form, using Peter Luschny's BellMatrix function defined in A264428 *) (* Jean-Fran├žois Alcover, Jan 29 2016 *)

PROG

(Sage)

MLP = lambda n: sum(binomial(n, k)*2^k*falling_factorial(n-1, n-k)* falling_factorial(x, k) for k in (0..n)).expand()

def A137513_row(n): return MLP(n).list()

for n in (0..9): A137513_row(n) # Peter Luschny, Jan 28 2016

CROSSREFS

Cf. A049218, A098558 (row sums).

Sequence in context: A326404 A307510 A323885 * A221419 A140668 A323900

Adjacent sequences:  A137510 A137511 A137512 * A137514 A137515 A137516

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula, Apr 23 2008

EXTENSIONS

Edited and new name by Peter Luschny, Jan 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 22:26 EST 2019. Contains 329306 sequences. (Running on oeis4.)