login
A137373
Triangular sequence from coefficients of Gould polynomials for the special case: n=a=b; g(x,n)=(x/(x - n^2))*binomial(x - n^2, n).
0
1, 0, 1, 0, -5, 1, 0, 110, -21, 1, 0, -5814, 971, -54, 1, 0, 570024, -83050, 4535, -110, 1, 0, -89927760, 11544394, -592605, 15205, -195, 1, 0, 20872566000, -2387965020, 113809024, -2892225, 41335, -315, 1, 0, -6702649153200, 690576361740, -30488594444, 747700849, -11000360, 97090, -476, 1, 0
OFFSET
1,5
LINKS
Eric Weisstein's World of Mathematics, Gould Polynomial.
EXAMPLE
{1},
{0, 1},
{0, -5, 1},
{0, 110, -21, 1},
{0, -5814, 971, -54, 1},
{0, 570024, -83050, 4535, -110, 1},
{0, -89927760,11544394, -592605, 15205, -195, 1},
{0,20872566000, -2387965020, 113809024, -2892225, 41335, -315, 1},
...
MATHEMATICA
g[x_, n_] := (x/(x - n^2))*Binomial[x - n^2, n];
Table[ExpandAll[n!*g[x, n]], {n, 0, 10}];
a = Table[CoefficientList[n!*g[x, n], x], {n, 0, 10}];
Flatten[a]
CROSSREFS
Sequence in context: A292604 A112991 A346081 * A220962 A201292 A348975
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Apr 09 2008
STATUS
approved