OFFSET
1,3
COMMENTS
A Lyndon word is the aperiodic necklace representative which is lexicographically earliest among its cyclic shifts. Thus we can apply the fixed density formulas: L_k(n,d)=sum L(n-d, n_1,..., n_(k-1)); n_1+...+n_(k-1)=d where L(n_0, n_1,...,n_(k-1))=(1/n)sum mu(j)*[(n/j)!/((n_0/j)!(n_1/j)!...(n_(k-1)/j)!)]; j|gcd(n_0, n_1,...,n_(k-1)). For this sequence, sum over n_0,n_1=even.
REFERENCES
M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
F. Ruskey and J. Sawada, An Efficient Algorithm for Generating Necklaces with Fixed Density, SIAM J. Computing, 29 (1999) 671-684.
M. Zabrocki, MATH5020 York University Course Website
FORMULA
a(1)=1; for n>1, if n=odd then a(n)= sum(mu(d)*3^(n/d))/(4n); d|n. If n=even, then a(n)= sum(mu(d)*3^(n/d))/n; d|n -(3/4)*sum(mu(d)*(3^(n/d)-1))/n; d|n, d odd.
EXAMPLE
For n=3, out of 8 possible Lyndon words: 112, 113, 122, 123, 132, 133, 223, 233, only 113 and 223 have an even number of both 1's and 2's. Thus a(3)=2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Jan 16 2008
STATUS
approved