This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006575 Number of primitive (aperiodic, or Lyndon) asymmetric rhythm cycles: ones having no nontrivial shift automorphism. (Formerly M1204) 10
 1, 2, 4, 10, 24, 60, 156, 410, 1092, 2952, 8052, 22140, 61320, 170820, 478288, 1345210, 3798240, 10761660, 30585828, 87169608, 249055976, 713205900, 2046590844, 5883948540, 16945772184, 48882035160, 141214767876 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Asymmetric rhythm cycles (A115114): binary necklaces of length 2n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th bead (modulo 2n) is of color 0. - Valery A. Liskovets, Jan 17 2006 This sequence differs from the Moebius transform of A115114 (for even n). Coincides with the second row (q=3) of array A098691. - Valery A. Liskovets, Jan 17 2006 This sequence is the number of Lyndon words on {1, 2, 3} with an odd number of 1's. Also, for even n, this sequence represents the differences between the number of Lyndon words on {1, 2, 3} with an odd number of 1's and the number of Lyndon words on {1, 2, 3} with an even number of 1's. - Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Jan 03 2008 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Joerg Arndt, Table of n, a(n) for n = 1..200 R. W. Hall and P. Klingsberg, Asymmetric Rhythms, Tiling Canons and Burnside's Lemma,Bridges Proceedings, pp. 189-194, 2004 (Winfield, Kansas). R. W. Hall and P. Klingsberg, Asymmetric Rhythms and Tiling Canons, Preprint, 2004. D. Shanks and M. Lal, Bateman's constants reconsidered and the distribution of cubic residues, Math. Comp., 26 (1972), 265-285. FORMULA From Valery A. Liskovets, Jan 17 2006: (Start) a(n) = (Sum_{d|n, d odd} mu(d)*(3^(n/d)-1))/(2*n). a(n) = (3^n-1)/(2*n) for n=2^k and a(n) = (Sum_{d|n, d odd} mu(d)*3^(n/d))/(2*n) otherwise. (End) EXAMPLE Example. For n=3, out of 6=A115114(3) admissible rhythm cycles (necklaces) 000000, 100000, 110000, 101000, 111000 and 101010, only the first and the last ones are imprimitive. Thus a(3)=4. MATHEMATICA a[n_] := DivisorSum[n, If[BitAnd[#, 1]==1, MoebiusMu[#]*(3^(n/#)-1), 0]&] / (2n); Array[a, 30] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *) PROG (PARI) a(n) = sumdiv( n, d, if ( bitand(d, 1), moebius(d) * (3^(n/d)-1) , 0 ) ) / (2*n); /* Joerg Arndt, Dec 30 2012 */ CROSSREFS Cf. A133267. Row q=3 of A098691. Sequence in context: A291419 A088354 A055919 * A307900 A230551 A246566 Adjacent sequences:  A006572 A006573 A006574 * A006576 A006577 A006578 KEYWORD nonn AUTHOR EXTENSIONS Edited and extended by Valery A. Liskovets, Jan 17 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 02:23 EDT 2019. Contains 328135 sequences. (Running on oeis4.)