This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136515 Number of unit square lattice cells inside half-plane (two adjacent quadrants) of origin centered circle of diameter 2n+1. 3
 0, 2, 6, 12, 26, 38, 56, 74, 96, 128, 154, 188, 220, 262, 304, 344, 398, 452, 506, 562, 616, 686, 754, 824, 894, 976, 1056, 1134, 1224, 1308, 1406, 1500, 1592, 1694, 1804, 1914, 2026, 2136, 2258, 2374, 2504, 2626, 2756, 2892, 3022, 3164, 3300, 3450, 3600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of unit square lattice cells inside two adjacent quadrants of origin centered circle of radius n+1/2 As n -> infinity, lim a(n)/(n^2) -> pi/8 LINKS FORMULA a(n) = 2*Sum(floor(sqrt((n+1/2)^2 - k^2))), k = 1 ... n EXAMPLE a(2) = 6 because a circle centered at the origin and of radius 2.5 encloses (-2,1),(-1,1),(-1,2),(2,1),(1,1),(1,2) in the upper half plane MATHEMATICA Table[2*Sum[Floor[Sqrt[(n + 1/2)^2 - k^2]], {k, 1, n}], {n, 0, 100}] CROSSREFS Cf. a(n) = 2 * A136484 = 1/2 * A136486 odd terms of A136513. Sequence in context: A214663 A151385 A034875 * A141347 A300120 A246584 Adjacent sequences:  A136512 A136513 A136514 * A136516 A136517 A136518 KEYWORD easy,nonn AUTHOR Glenn C. Foster (gfoster(AT)uiuc.edu), Jan 02 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 23:30 EDT 2019. Contains 328103 sequences. (Running on oeis4.)