login
A136097
a(n) = A135951(n) /[(2^(n+1)-1) * 2^(n*(n-1)/2)].
1
1, -1, 5, -93, 6477, -1733677, 1816333805, -7526310334829, 124031223014725741, -8152285307423733458541, 2140200604371078953284092525, -2245805993494514875022552272042605, 9423041917569791458584837551185555483245
OFFSET
0,3
COMMENTS
A135951 is the central terms of A135950; A135950 is the matrix inverse of A022166; A022166 is the triangle of Gaussian binomial coefficients [n,k] for q = 2.
FORMULA
Conjecture: the n-th central term of the matrix inverse of the triangle of Gaussian binomial coefficients in q is divisible by [(q^(n+1)-1)/(q-1) * q^(n*(n-1)/2)] for n>=0 and integer q > 1.
a(n) = (-1)^n * A015030(n) where A015030 is 2-Catalan numbers. - Michael Somos, Jan 10 2023
MATHEMATICA
Table[(-1)^n QBinomial[2n, n, 2]/(2^(n+1) - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
PROG
(PARI) a(n)=local(q=2, A=matrix(2*n+1, 2*n+1, n, k, if(n>=k, if(n==1 || k==1, 1, prod(j=n-k+1, n-1, 1-q^j)/prod(j=1, k-1, 1-q^j))))^-1); A[2*n+1, n+1]/( (q^(n+1)-1)/(q-1) * q^(n*(n-1)/2) )
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 13 2007
STATUS
approved