This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000365 Number of genus 0 rooted planar maps with n vertices. (Formerly M4022 N1669) 3
 5, 93, 1030, 8885, 65954, 442610, 2762412, 16322085, 92400330, 505403910, 2687477780, 13957496098, 71053094420, 355548314180, 1752827693528, 8529176056965, 41026491589722, 195327793313790, 921451498774660, 4311086414580022, 20019238138410940 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). Tutte, W. T.; On the enumeration of planar maps. Bull. Amer. Math. Soc. 74 1968 64-74. T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971. T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218. LINKS T. D. Noe, Table of n, a(n) for n = 3..200 FORMULA G.f.: x^2*(1-sqrt(1-4x))(7+4x-2sqrt(1-4x))/(2(4x-1)^4). - corrected for right offset by Vaclav Kotesovec, Aug 13 2013 a(n) ~ n^3*4^n/24 * (1-4/(sqrt(Pi*n))). - Vaclav Kotesovec, Aug 13 2013 MATHEMATICA nn = 20; CoefficientList[Series[x^2 (1 - Sqrt[1 - 4 x]) (7 + 4 x - 2 Sqrt[1 - 4 x])/(2 (4 x - 1)^4), {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *) CROSSREFS Sequence in context: A152283 A205344 A270408 * A209471 A012784 A015030 Adjacent sequences:  A000362 A000363 A000364 * A000366 A000367 A000368 KEYWORD nonn AUTHOR EXTENSIONS More terms from Sean A. Irvine, Nov 14 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 23:05 EST 2019. Contains 319282 sequences. (Running on oeis4.)