login
A135897
Triangle, read by rows, equal to R^4, the matrix 4th power of R = A135894.
2
1, 4, 1, 26, 12, 1, 216, 138, 20, 1, 2171, 1716, 330, 28, 1, 25628, 23647, 5440, 602, 36, 1, 348050, 362116, 94515, 12348, 954, 44, 1, 5352788, 6138746, 1761940, 258391, 23400, 1386, 52, 1, 92056223, 114543428, 35429974, 5662412, 572331, 39556, 1898
OFFSET
0,2
COMMENTS
Triangle P = A135880 is defined by: column k of P^2 equals column 0 of P^(2k+2) such that column 0 of P^2 equals column 0 of P shift left.
FORMULA
Column k of R^4 = column 3 of P^(2k+1) for k>=0 where triangle P = A135880; column 0 of R^4 = column 3 of P; column 1 of R^4 = column 3 of P^3; column 2 of R^4 = column 3 of P^5.
EXAMPLE
Triangle R^4 begins:
1;
4, 1;
26, 12, 1;
216, 138, 20, 1;
2171, 1716, 330, 28, 1;
25628, 23647, 5440, 602, 36, 1;
348050, 362116, 94515, 12348, 954, 44, 1;
5352788, 6138746, 1761940, 258391, 23400, 1386, 52, 1; ...
where R = A135894 begins:
1;
1, 1;
2, 3, 1;
6, 12, 5, 1;
25, 63, 30, 7, 1;
138, 421, 220, 56, 9, 1;
970, 3472, 1945, 525, 90, 11, 1; ...
where column k of R = column 0 of P^(2k+1)
and P = A135880 begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
where column k of P equals column 0 of R^(k+1).
PROG
(PARI) {T(n, k)=local(P=Mat(1), R=Mat(1), PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); R=P*PShR; R=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, R[r, c], if(c==1, (P^2)[ #P, 1], (P^(2*c-1))[r-c+1, 1])))); P=matrix(#R, #R, r, c, if(r>=c, if(r<#R, P[r, c], (R^c)[r-c+1, 1]))))); (R^4)[n+1, k+1]}
CROSSREFS
Cf. A135884 (column 0); A135894 (R), A135880 (P), A135888 (P^3), A135892 (P^5).
Sequence in context: A263918 A136234 A196528 * A039816 A329060 A118283
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 15 2007
STATUS
approved