OFFSET
0,2
FORMULA
See formulas relating triangles P, Q and R, in entry A135880.
EXAMPLE
Triangle Q = P^2 begins:
1;
2, 1;
6, 4, 1;
25, 20, 6, 1;
138, 126, 42, 8, 1;
970, 980, 351, 72, 10, 1;
8390, 9186, 3470, 748, 110, 12, 1;
86796, 101492, 39968, 8936, 1365, 156, 14, 1;
1049546, 1296934, 528306, 121532, 19090, 2250, 210, 16, 1;
14563135, 18868652, 7906598, 1861416, 298830, 36028, 3451, 272, 18, 1;
228448504, 308478492, 132426050, 31785380, 5193982, 637390, 62230, 5016, 342, 20, 1; ...
where column k of Q equals column 0 of Q^(k+1) for k>=0.
Related triangle P = A135880 begins:
1;
1, 1;
2, 2, 1;
6, 7, 3, 1;
25, 34, 15, 4, 1;
138, 215, 99, 26, 5, 1;
970, 1698, 814, 216, 40, 6, 1; ...
where column k of Q equals column 0 of P^(2k+2)
such that column 0 of P^2 equals column 0 of P shift left.
The matrix product P*R^-1*P = A135899 = Q (shifted down one row),
where R = A135894 begins:
1;
1, 1;
2, 3, 1;
6, 12, 5, 1;
25, 63, 30, 7, 1;
138, 421, 220, 56, 9, 1;
970, 3472, 1945, 525, 90, 11, 1; ...
in which column k of R equals column 0 of P^(2k+1).
PROG
(PARI) {T(n, k)=local(P=Mat(1), R, PShR); if(n>0, for(i=0, n, PShR=matrix(#P, #P, r, c, if(r>=c, if(r==c, 1, if(c==1, 0, P[r-1, c-1])))); R=P*PShR; R=matrix(#P+1, #P+1, r, c, if(r>=c, if(r<#P+1, R[r, c], if(c==1, (P^2)[ #P, 1], (P^(2*c-1))[r-c+1, 1])))); P=matrix(#R, #R, r, c, if(r>=c, if(r<#R, P[r, c], (R^c)[r-c+1, 1]))))); (P^2)[n+1, k+1]}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 15 2007
STATUS
approved