login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135859
Row sums of triangle A135858.
5
1, 4, 13, 34, 73, 136, 229, 358, 529, 748, 1021, 1354, 1753, 2224, 2773, 3406, 4129, 4948, 5869, 6898, 8041, 9304, 10693, 12214, 13873, 15676, 17629, 19738, 22009, 24448, 27061, 29854, 32833, 36004, 39373, 42946, 46729, 50728, 54949
OFFSET
1,2
COMMENTS
Number of binary 3 X (n-1) matrices such that each row and column has at most one 1. - Dmitry Kamenetsky, Jan 20 2018
LINKS
FORMULA
Row sums of triangle A135858. Binomial transform of [1, 3, 6, 6, 0, 0, 0, ...].
G.f.: x*(1+3*x^2+2*x^3) / (1-x)^4. - R. J. Mathar, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012
a(n) = n^3 - 3*n^2 + 5*n - 2. - R. J. Mathar, Oct 20 2017
E.g.f.: 2 - (2 - 3*x - x^3)*exp(x). - G. C. Greubel, Aug 11 2022
EXAMPLE
a(3) = 13 = sum of row 3 terms of triangle A135858: (7, + 5 + 1).
a(4) = 34 = (1, 3, 3, 1) dot (1, 3, 6, 6) = (1 + 9 + 18 + 6).
MAPLE
seq(5*n - 2 + n^3 - 3*n^2, n=1..10^2); # Muniru A Asiru, Jan 24 2018
MATHEMATICA
CoefficientList[Series[(1+3*x^2+2*x^3)/(x-1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 29 2012 *)
PROG
(Magma) I:=[1, 4, 13, 34]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
(GAP) List([1..10^4], n-> 5*n - 2 + n^3 - 3*n^2); # Muniru A Asiru, Jan 24 2018
(SageMath) [n^3 -3*n^2 +5*n -2 for n in (1..50)] # G. C. Greubel, Aug 11 2022
CROSSREFS
Cf. A135858.
Sequence in context: A227122 A176361 A322599 * A161531 A101946 A029860
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 01 2007
STATUS
approved