login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322599 a(n) is the number of unlabeled rank-3 graded lattices with 4 coatoms and n atoms. 4
1, 4, 13, 34, 68, 121, 197, 299, 432, 600, 806, 1055, 1352, 1698, 2100, 2561, 3085, 3675, 4338, 5074, 5891, 6790, 7777, 8854, 10029, 11300, 12677, 14160, 15756, 17465, 19297, 21249, 23332, 25544, 27894, 30381, 33016, 35794, 38728, 41815, 45065 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Jukka Kohonen, Table of n, a(n) for n = 1..1000

J. Kohonen, Counting graded lattices of rank three that have few coatoms, arXiv:1804.03679 [math.CO] preprint (2018).

FORMULA

a(n) = (97/144)n^3 - (5/6)n^2 + [44/48, 47/48]n + [0, 13, 8, -45, 40, -19, 0, -5, 8, -27, 40, -37]/72. The value of the first bracket depends on whether n is even or odd. The value of the second bracket depends on whether (n mod 12) is 0, 1, 2, ..., 11.

Conjectures from Colin Barker, Dec 19 2018: (Start)

G.f.: x*(1 + 3*x + 8*x^2 + 17*x^3 + 21*x^4 + 21*x^5 + 16*x^6 + 7*x^7 + 3*x^8) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).

a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n>10.

(End)

EXAMPLE

a(2)=4: These are the four lattices.

    __o__        __o__       __o__       __o__

   / / \ \      / / \ \     / / \ \     / / \ \

  o o   o o     o o o o     o o o o     o o o o

   \_\ /_/|      \|/ \|      \|/  |     |/   \|

      o   o       o   o       o   o     o     o

       \ /         \ /         \ /       \_ _/

        o           o           o          o

CROSSREFS

Fourth row of A300260.

Adjacent rows are A322598, A322600.

Sequence in context: A036894 A227122 A176361 * A135859 A161531 A101946

Adjacent sequences:  A322596 A322597 A322598 * A322600 A322601 A322602

KEYWORD

nonn,easy

AUTHOR

Jukka Kohonen, Dec 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 06:48 EDT 2019. Contains 322209 sequences. (Running on oeis4.)