login
A134943
Decimal expansion of (golden ratio divided by 3 = phi/3 = (1 + sqrt(5))/6).
1
5, 3, 9, 3, 4, 4, 6, 6, 2, 9, 1, 6, 6, 3, 1, 6, 1, 6, 0, 6, 8, 1, 9, 5, 6, 1, 1, 4, 5, 5, 2, 1, 2, 7, 0, 5, 9, 0, 6, 7, 6, 9, 7, 2, 6, 6, 0, 1, 9, 2, 0, 9, 5, 4, 0, 4, 5, 1, 4, 9, 5, 4, 0, 9, 0, 1, 7, 5, 3, 4, 8, 7, 6, 0, 6, 3, 0, 0, 8, 1, 6, 5, 6, 9, 0, 6, 9, 0, 6, 8, 0, 6, 3, 1, 3, 0, 3, 7, 9, 1, 6, 1, 5, 8, 4, 6, 9, 6, 0, 2, 5, 1, 2, 8, 9, 6, 3, 9, 1, 7
OFFSET
0,1
COMMENTS
The vertex-to-face edge-length ratio between a dodecahedron and its enclosing dual icosahedron. See Wassell and Benito. - Michel Marcus, Sep 30 2019
FORMULA
Equals sqrt((3+sqrt(5))/18) or sqrt(6+2*sqrt(5))/6. See Wassell and Benito. - Michel Marcus, Sep 30 2019
Equals Product_{k>=2} (1 - 1/Fibonacci(2*k)). - Amiram Eldar, May 27 2021
EXAMPLE
0.5393446629166...
MATHEMATICA
RealDigits[GoldenRatio/3, 10, 120][[1]] (* Harvey P. Dale, Jan 15 2012 *)
PROG
(PARI) (1+sqrt(5))/6 \\ Michel Marcus, Sep 30 2019
CROSSREFS
Cf. A000045, A001622 (phi).
Sequence in context: A059031 A245516 A073243 * A105372 A107449 A155496
KEYWORD
cons,nonn
AUTHOR
Omar E. Pol, Nov 15 2007
EXTENSIONS
More terms from Harvey P. Dale, Jan 15 2012
STATUS
approved