This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073243 Decimal expansion of exp(-LambertW(log(Pi))), solution to x = 1/Pi^x. 10
 5, 3, 9, 3, 4, 3, 4, 9, 8, 8, 6, 2, 3, 0, 1, 2, 0, 8, 0, 6, 0, 7, 9, 5, 6, 8, 4, 4, 5, 5, 5, 9, 8, 4, 2, 0, 9, 8, 6, 4, 5, 5, 9, 7, 3, 2, 9, 4, 8, 4, 2, 6, 1, 1, 9, 4, 8, 8, 1, 5, 0, 1, 4, 8, 7, 0, 4, 6, 2, 7, 5, 4, 0, 1, 7, 4, 9, 0, 4, 5, 5, 5, 2, 8, 4, 1, 5, 2, 4, 2, 9, 3, 6, 8, 1, 7, 6, 7, 7, 3, 5, 4, 0, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Original definition: Limit of (1/Pi)^...^(1/Pi), n times, as n approaches infinity. Equals exp(-LambertW(log(Pi))). The value can be obtained by iterating x -> 1/Pi^x with any real starting value, but convergence is linear and slow: about 5 iterations are needed for each additional decimal digit. - M. F. Hasler, Nov 01 2011 According to the Weisstein link, infinite iterated exponentiation such as used here, which is referred to both as an "infinite power tower" and "h(x)" -- with graph and other notations -- "converges iff e^(-e) <= x <= e^(1/e) as shown by Euler (1783) and Eisenstein (1844)" (citing Le Lionnais and Wells references). e^(-e) = A073230. e^(1/e) = A073229. x of interest here = 1/Pi = A049541. (1/A073243)^(1/A073243) = A030437^A030437 = Pi. If y = h(x) = x^x^x^... converges, then by substitution y = x^y. So x^x^x^... is a solution y to the equation y^(1/y) = x. - Jonathan Sondow, Aug 27 2011 The expressions involving "..." in the above comment are misleading, since the limit is not obtained by applying additional "^x" to the previous expression, i.e., iterating "t -> t^x", but corresponds to iterations of "t -> x^t". - M. F. Hasler, Nov 01 2011 LINKS Stanislav Sykora, Table of n, a(n) for n = 0..1999 J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; see the Appendix. E. Weisstein, Power Tower FORMULA x = LambertW(log(Pi))/log(Pi), solution to Pi^x=1/x. - M. F. Hasler, Nov 01 2011 EXAMPLE 0.53934349886230120806079568445... MATHEMATICA y /. FindRoot[y^(1/y) == 1/Pi, {y, 1}, WorkingPrecision -> 100] (* Jonathan Sondow, Aug 27 2011 *) First[RealDigits[Exp[-ProductLog[Log[Pi]]], 10, 104]] (* Vladimir Reshetnikov, Nov 01 2011 *) PROG (PARI) /* The program below was run with precision set to 1000 digits */ /* n is the number of iterated exponentiations performed. */ /* (n turns out to be 954 with 1E-200 specified here) */ n=0; s=1/Pi; t=1; while(abs(t-s)>1E-200, t=s; s=(1/Pi)^s; n++); print(n, ", ", s) (PARI) solve(x=0, 1, x-1/Pi^x)  \\ - M. F. Hasler, Nov 01 2011 CROSSREFS Cf. A000796 (Pi), A049541 (1/Pi), A073240 ((1/Pi)^(1/Pi)), A073241 ((1/Pi)^(1/Pi)^(1/Pi)), A030437 (reciprocal of A073243), A030178 (corresponding limit for 1/e), A030797 (reciprocal of A030178). Sequence in context: A159275 A059031 A245516 * A134943 A105372 A107449 Adjacent sequences:  A073240 A073241 A073242 * A073244 A073245 A073246 KEYWORD cons,nonn AUTHOR Rick L. Shepherd, Jul 28 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 20:53 EDT 2018. Contains 315425 sequences. (Running on oeis4.)