login

%I #27 Oct 30 2023 11:56:41

%S 1,3,1,5,2,1,8,4,2,1,10,5,3,2,1,14,8,5,3,2,1,16,9,6,4,3,2,1,20,12,8,6,

%T 4,3,2,1,23,14,10,7,5,4,3,2,1,27,17,12,9,7,5,4,3,2,1,29,18,13,10,8,6,

%U 5,4,3,2,1,35,23,17,13,10,8,6,5,4,3,2,1,37,24,18,14,11,9,7,6,5,4,3,2,1

%N A010766 * A000012.

%F A010766 * A000012 as infinite lower triangular matrices.

%F Triangle read by rows, partial row sums of A010766 starting fromt the right.

%F G.f. of column k: 1/(1-x) * Sum_{j>=1} x^(k*j)/(1-x^j) = 1/(1-x) * Sum_{j>=k} x^j/(1-x^j). - _Seiichi Manyama_, Oct 30 2023

%e First few rows of the triangle:

%e 1;

%e 3, 1;

%e 5, 2, 1;

%e 8, 4, 2, 1;

%e 10, 5, 3, 2, 1;

%e 14, 8, 5, 3, 2, 1;

%e 16, 9, 6, 4, 3, 2, 1;

%e 20, 12, 8, 6, 4, 3, 2, 1;

%e 23, 14, 10, 7, 5, 4, 3, 2, 1;

%e 27, 17, 12, 9, 7, 5, 4, 3, 2, 1;

%e ...

%t t = Table[Sum[Floor[n/h], {h, k, n}], {n, 0, 10}, {k, 1, n}];

%t u = Flatten[t] (* A134867 array *)

%t TableForm[t] (* A134867 sequence *)

%t (* _Clark Kimberling_, Oct 11 2014 *)

%o (PARI) T(n, k) = sum(j=k, n, n\j); \\ _Seiichi Manyama_, Oct 30 2023

%Y Column k=1..4 give: A006218, A002541, A366968, A366972.

%Y Row sums give A024916.

%Y Cf. A010766, A135539.

%K nonn,tabl

%O 1,2

%A _Gary W. Adamson_, Nov 14 2007

%E More terms from _Seiichi Manyama_, Oct 30 2023