login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010766 Triangle read by rows: row n gives the numbers floor(n/k), k = 1..n. 77
1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 5, 2, 1, 1, 1, 6, 3, 2, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 13, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of times k occurs as divisor of numbers not greater than n. - Reinhard Zumkeller, Mar 19 2004

Viewed as a partition, row n is the smallest partition that contains every partition of n in the usual ordering. - Franklin T. Adams-Watters, Mar 11 2006

Row sums = A006218. - Gary W. Adamson, Oct 30 2007

A014668 = eigensequence of the triangle. A163313 = A010766 * A014668 (diagonalized) as an infinite lower triangular matrix. - Gary W. Adamson, Jul 30 2009

A018805(T(n,k)) = A242114(n,k). - Reinhard Zumkeller, May 04 2014

Viewed as partitions, all rows are self-conjugate. - Matthew Vandermast, Sep 10 2014

Row n is the partition whose Young diagram is the union of Young diagrams of all partitions of n (rewording of Franklin T. Adams-Watters's comment). - Harry Richman, Jan 13 2022

LINKS

T. D. Noe, Rows n = 1..50 of triangle, flattened

FORMULA

G.f.: 1/(1-x)*Sum_{k>=1} x^k/(1-y*x^k). - Vladeta Jovovic, Feb 05 2004

Triangle A010766 = A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Oct 30 2007

Equals A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Nov 14 2007

Let T(n,0) = n+1, then T(n,k) = (sum of the k preceding elements in the previous column) minus (sum of the k preceding elements in same column). - Mats Granvik, Gary W. Adamson, Feb 20 2010

T(n,k) = (n - A048158(n,k)) / k. - Reinhard Zumkeller, Aug 13 2013

T(n,k) = 1 + T(n-k,k) (where T(n-k,k) = 0 if n < 2*k). - Robert Israel, Sep 01 2014

T(n,k) = T(floor(n/k),1) if k>1; T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i). If we modify the formula to T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i)/i^s, where s is a complex variable, then the first column becomes the partial sums of the Riemann zeta function. - Mats Granvik, Apr 27 2016

EXAMPLE

Triangle starts:

1: 1;

2: 2, 1;

3: 3, 1, 1;

4: 4, 2, 1, 1;

5: 5, 2, 1, 1, 1;

6: 6, 3, 2, 1, 1, 1;

7: 7, 3, 2, 1, 1, 1, 1;

8: 8, 4, 2, 2, 1, 1, 1, 1;

9: 9, 4, 3, 2, 1, 1, 1, 1, 1;

10: 10, 5, 3, 2, 2, 1, 1, 1, 1, 1;

11: 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1;

12: 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1;

13: 13, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1;

14: 14, 7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;

15: 15, 7, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;

16: 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;

17: 17, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;

18: 18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;

19: 19, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;

20: 20, 10, 6, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;

...

MAPLE

seq(seq(floor(n/k), k=1..n), n=1..20); # Robert Israel, Sep 01 2014

MATHEMATICA

Flatten[Table[Floor[n/k], {n, 20}, {k, n}]] (* Harvey P. Dale, Nov 03 2012 *)

PROG

(Haskell)

a010766 = div

a010766_row n = a010766_tabl !! (n-1)

a010766_tabl = zipWith (map . div) [1..] a002260_tabl

-- Reinhard Zumkeller, Apr 29 2015, Aug 13 2013, Apr 13 2012

(PARI) a(n)=t=floor((-1+sqrt(1+8*(n-1)))/2); (t+1)\(n-t*(t+1)/2) \\ Edward Jiang, Sep 10 2014

(PARI) T(n, k) = sum(i=1, n, (i % k) == 0); \\ Michel Marcus, Apr 08 2017

CROSSREFS

Another version of A003988.

Finite differences of rows: A075993.

Cf. related triangles: A002260, A013942, A051731, A163313, A277646, A277647.

Cf. related sequences: A006218, A014668, A115725.

Columns of this triangle:

T(n,1) = n,

T(n,2) = A008619(n-2) for n>1,

T(n,3) = A008620(n-3) for n>2,

T(n,4) = A008621(n-4) for n>3,

T(n,5) = A002266(n) for n>4,

T(n,n) = A000012(n) = 1.

Rows of this triangle (with infinite trailing zeros):

T(1,k) = A000007(k-1),

T(2,k) = A033322(k),

T(3,k) = A278105(k),

T(4,k) = A033324(k),

T(5,k) = A033325(k),

T(6,k) = A033326(k),

T(7,k) = A033327(k),

T(8,k) = A033328(k),

T(9,k) = A033329(k),

T(10,k) = A033330(k),

...

T(99,k) = A033419(k),

T(100,k) = A033420(k),

T(1000,k) = A033421(k),

T(10^4,k) = A033422(k),

T(10^5,k) = A033427(k),

T(10^6,k) = A033426(k),

T(10^7,k) = A033425(k),

T(10^8,k) = A033424(k),

T(10^9,k) = A033423(k).

Sequence in context: A088425 A141294 A174557 * A135841 A210992 A220484

Adjacent sequences: A010763 A010764 A010765 * A010767 A010768 A010769

KEYWORD

nonn,tabl,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Cross references edited by Jason Kimberley, Nov 23 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)