OFFSET
1,5
REFERENCES
E. Barcucci, A. del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
The generating polynomial of row n is P(n,t)=Q(n,t,1), where Q(1,t,x)=x and Q(n,t,x)=xQ(n-1,1,t)+x(1+(n-2)t)Q(n-1,t,x) for n>=2.
EXAMPLE
T(2,0)=T(2,1)=1 because the horizontal domino has no cells in the 2nd row and the vertical domino has 1 cell in the 2nd row.
Triangle starts:
1;
1,1;
1,3,2;
1,7,10,6;
1,16,37,42,24;
MAPLE
Q[1]:=x: for n from 2 to 10 do Q[n]:=expand(x*subs({t=1, x=t}, Q[n-1])+x*Q[n-1]+(n-2)*t*x*Q[n-1]) end do: for n to 9 do P[n]:=sort(subs(x=1, Q[n])) end do: for n to 9 do seq(coeff(P[n], t, j), j=0..n-1) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Nov 30 2007
STATUS
approved