OFFSET
0,2
COMMENTS
See a comment under A134288 on the coincidence of column and diagonal sequences.
Kekulé numbers K(O(1,7,n)) for certain benzenoids (see the Cyvin-Gutman reference, p. 105, eq. (i)).
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
a(n) = A001263(n+8,8) = binomial(n+8,8)*binomial(n+8,7)/(n+8).
O.g.f.: P(7,x)/(1-x)^15 with the numerator polynomial P(7,x) = Sum_{k=1..7} A001263(7,k)*x^(k-1), the seventh row polynomial of the Narayana triangle: P(7,x) = 1 + 21*x + 105*x^2 + 175*x^3 + 105*x^4 + 21*x^5 + x^6.
For n>14: a(n) = 15*a(n-1) - 105*a(n-2) + 455*a(n-3) - 1365*a(n-4) + 3003*a(n-5) - 5005*a(n-6) + 6435*a(n-7) - 6435*a(n-8) + 5005*a(n-9) - 3003*a(n-10) + 1365*a(n-11) - 455*a(n-12) + 105*a(n-13) - 15*a(n-14) + a(n-15). - Harvey P. Dale, Jul 23 2012
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 12767346/25 - 51744*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 1192508/75 - 114688*log(2)/5. (End)
MAPLE
a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7))^2*(n+8))/203212800;
seq(a(n), n=0..24); # Peter Luschny, Sep 01 2016
MATHEMATICA
Table[(Binomial[n + 8, 8] Binomial[n + 8, 7])/(n + 8), {n, 0, 30}] (* or *) LinearRecurrence[{15, -105, 455, -1365, 3003, -5005, 6435, -6435, 5005, -3003, 1365, -455, 105, -15, 1}, {1, 36, 540, 4950, 32670, 169884, 736164, 2760615, 9202050, 27810640, 77364144, 200443464, 488259720, 1126753200, 2478857040}, 30] (* Harvey P. Dale, Jul 23 2012 *)
PROG
(PARI) vector(30, n, binomial(n+7, 8)*binomial(n+6, 6)/7) \\ G. C. Greubel, Aug 28 2019
(Magma) [Binomial(n+8, 8)*Binomial(n+7, 6)/7: n in [0..30]]; // G. C. Greubel, Aug 28 2019
(Sage) [binomial(n+8, 8)*binomial(n+7, 6)/7 for n in (0..30)] # G. C. Greubel, Aug 28 2019
(GAP) List([0..30], n-> Binomial(n+8, 8)*Binomial(n+7, 6)/7); # G. C. Greubel, Aug 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved