login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134289
Eighth column (and diagonal) of Narayana triangle A001263.
7
1, 36, 540, 4950, 32670, 169884, 736164, 2760615, 9202050, 27810640, 77364144, 200443464, 488259720, 1126753200, 2478857040, 5226256926, 10606227291, 20796524100, 39525557500, 73018266750, 131432880150, 231003243900, 397179490500, 669161098125, 1106346348900
OFFSET
0,2
COMMENTS
See a comment under A134288 on the coincidence of column and diagonal sequences.
Kekulé numbers K(O(1,7,n)) for certain benzenoids (see the Cyvin-Gutman reference, p. 105, eq. (i)).
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
LINKS
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
a(n) = A001263(n+8,8) = binomial(n+8,8)*binomial(n+8,7)/(n+8).
O.g.f.: P(7,x)/(1-x)^15 with the numerator polynomial P(7,x) = Sum_{k=1..7} A001263(7,k)*x^(k-1), the seventh row polynomial of the Narayana triangle: P(7,x) = 1 + 21*x + 105*x^2 + 175*x^3 + 105*x^4 + 21*x^5 + x^6.
For n>14: a(n) = 15*a(n-1) - 105*a(n-2) + 455*a(n-3) - 1365*a(n-4) + 3003*a(n-5) - 5005*a(n-6) + 6435*a(n-7) - 6435*a(n-8) + 5005*a(n-9) - 3003*a(n-10) + 1365*a(n-11) - 455*a(n-12) + 105*a(n-13) - 15*a(n-14) + a(n-15). - Harvey P. Dale, Jul 23 2012
a(n) = Product_{i=1..7} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 12767346/25 - 51744*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 1192508/75 - 114688*log(2)/5. (End)
MAPLE
a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7))^2*(n+8))/203212800;
seq(a(n), n=0..24); # Peter Luschny, Sep 01 2016
MATHEMATICA
Table[(Binomial[n + 8, 8] Binomial[n + 8, 7])/(n + 8), {n, 0, 30}] (* or *) LinearRecurrence[{15, -105, 455, -1365, 3003, -5005, 6435, -6435, 5005, -3003, 1365, -455, 105, -15, 1}, {1, 36, 540, 4950, 32670, 169884, 736164, 2760615, 9202050, 27810640, 77364144, 200443464, 488259720, 1126753200, 2478857040}, 30] (* Harvey P. Dale, Jul 23 2012 *)
PROG
(PARI) vector(30, n, binomial(n+7, 8)*binomial(n+6, 6)/7) \\ G. C. Greubel, Aug 28 2019
(Magma) [Binomial(n+8, 8)*Binomial(n+7, 6)/7: n in [0..30]]; // G. C. Greubel, Aug 28 2019
(Sage) [binomial(n+8, 8)*binomial(n+7, 6)/7 for n in (0..30)] # G. C. Greubel, Aug 28 2019
(GAP) List([0..30], n-> Binomial(n+8, 8)*Binomial(n+7, 6)/7); # G. C. Greubel, Aug 28 2019
CROSSREFS
Cf. A002378.
Cf. A134288 (seventh column of Narayana triangle).
Cf. A134290 (ninth column of Narayana triangle).
Sequence in context: A233101 A183616 A008657 * A329913 A200708 A186309
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved