login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. A(x) = 1/(1 - LambertW(-x)^2).
16

%I #41 Jan 29 2024 08:59:47

%S 1,0,2,12,120,1480,22320,396564,8118656,188185680,4871980800,

%T 139342178140,4363291266048,148470651659928,5455056815237120,

%U 215238256785814500,9077047768435752960,407449611073696325536,19396232794530856894464,976025303642559490903980

%N Expansion of e.g.f. A(x) = 1/(1 - LambertW(-x)^2).

%C E.g.f. equals the square of the e.g.f. of A060435, where A060435(n) = number of functions f: {1,2,...,n} -> {1,2,...,n} with even cycles only.

%H Vincenzo Librandi, <a href="/A134095/b134095.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = Sum_{k=0..n} C(n,k) * (n-k)^k * k^(n-k).

%F a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*n^k/k!. - _Vladeta Jovovic_, Oct 17 2007

%F a(n) ~ n^n/2. - _Vaclav Kotesovec_, Nov 27 2012, simplified Nov 22 2021

%F a(n) = n! * [x^n] exp(n*x)/(1 + x). - _Ilya Gutkovskiy_, Sep 18 2018

%F a(n) = (-1)^n*exp(-n)*Integral_{x=-n..oo} x^n*exp(-x) dx. - _Thomas Scheuerle_, Jan 29 2024

%e E.g.f.: A(x) = 1 + 0*x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1480*x^5/5! + ...

%e The formula A(x) = 1/(1 - LambertW(-x)^2) is illustrated by:

%e A(x) = 1/(1 - (x + x^2 + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + ...)^2).

%p seq(simplify(GAMMA(n+1,-n)*(-exp(-1))^n),n=0..20); # _Vladeta Jovovic_, Oct 17 2007

%t CoefficientList[Series[1/(1-LambertW[-x]^2), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Nov 27 2012 *)

%t a[x0_] := x D[1/x Exp[x], {x, n}] x^n Exp[-x] /. x->x0

%t Table[a[n], {n, 0, 20}] (* _Gerry Martens_, May 05 2016 *)

%o (PARI) {a(n)=sum(k=0,n,(n-k)^k*k^(n-k)*binomial(n,k))}

%o (PARI) /* Generated by e.g.f. 1/(1 - LambertW(-x)^2 ): */

%o {a(n)=my(LambertW=-x*sum(k=0,n,(-x)^k*(k+1)^(k-1)/k!) +x*O(x^n)); n!*polcoeff(1/(1-subst(LambertW,x,-x)^2),n)}

%Y Cf. A060435; indirectly related: A062817, A132608.

%Y Cf. A063170, A277458, A277490, A277510.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 11 2007