login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134095 E.g.f.: A(x) = 1/(1 - LambertW(-x)^2). 11
1, 0, 2, 12, 120, 1480, 22320, 396564, 8118656, 188185680, 4871980800, 139342178140, 4363291266048, 148470651659928, 5455056815237120, 215238256785814500, 9077047768435752960, 407449611073696325536, 19396232794530856894464, 976025303642559490903980 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

E.g.f. equals the square of the e.g.f. of A060435, where A060435(n) = number of functions f: {1,2,...,n} -> {1,2,...,n} with even cycles only.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = Sum_{k=0..n} C(n,k) * (n-k)^k * k^(n-k).

a(n) = n!*Sum_{k=0..n} (-1)^(n-k)*n^k/k!. - Vladeta Jovovic, Oct 17 2007

a(n) ~ (1/8)*(4*n-1)*n^(n-1). - Vaclav Kotesovec, Nov 27 2012

a(n) = n! * [x^n] exp(n*x)/(1 + x). - Ilya Gutkovskiy, Sep 18 2018

EXAMPLE

E.g.f.: A(x) = 1 + 0*x + 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1480*x^5/5! + ...

The formula A(x) = 1/(1 - LambertW(-x)^2) is illustrated by:

A(x) = 1/(1 - (x + x^2 + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! + ...)^2).

MAPLE

seq(simplify(GAMMA(n+1, -n)*(-exp(-1))^n), n=0..20); # Vladeta Jovovic, Oct 17 2007

MATHEMATICA

CoefficientList[Series[1/(1-LambertW[-x]^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)

a[x0_] := x D[1/x Exp[x], {x, n}] x^n Exp[-x] /. x->x0

Table[a[n], {n, 0, 20}] (* Gerry Martens, May 05 2016 *)

PROG

(PARI) {a(n)=sum(k=0, n, (n-k)^k*k^(n-k)*binomial(n, k))}

(PARI) /* Generated by e.g.f. 1/(1 - LambertW(-x)^2 ): */

{a(n)=my(LambertW=-x*sum(k=0, n, (-x)^k*(k+1)^(k-1)/k!) +x*O(x^n)); n!*polcoeff(1/(1-subst(LambertW, x, -x)^2), n)}

CROSSREFS

Cf. A060435; indirectly related: A062817, A132608.

Cf. A063170, A277458, A277490, A277510.

Sequence in context: A127112 A003580 A052580 * A204042 A302702 A189981

Adjacent sequences:  A134092 A134093 A134094 * A134096 A134097 A134098

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 01:55 EDT 2020. Contains 336476 sequences. (Running on oeis4.)