OFFSET
0,1
COMMENTS
Consider the density of the radiation function (in wavelength form) B(lambda) = 2*h*c^2/{lambda^5*[exp(h*c/(kB*lambda*T))-1]}, where h is Planck's constant, c the speed of light, kB the Boltzmann constant, T the absolute temperature, and lambda the wavelength. Searching the maximum, we set the first derivative dB/dlambda to zero, then substitute x=lambda*T/(h*c/kB). The equation becomes 5+(1/x-5)*exp(1/x)=0 and the solution x is this constant here. - R. J. Mathar, Jan 30 2014
LINKS
Eric Weisstein's World of Mathematics, Planck's Radiation Function
Wikipedia, Wien's displacement law
EXAMPLE
0.20140523527264218061... = 1/4.96511..
MATHEMATICA
RealDigits[ x /. FindRoot[5x - E^(1/x)*(5x - 1), {x, 1/5}, WorkingPrecision -> 105]][[1]] (* or *)
1/(ProductLog[-5*Exp[-5]]+5) // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Nov 09 2012, updated Feb 27 2014, after Eric W. Weisstein *)
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Sep 26 2007
STATUS
approved