login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133841 Decimal expansion of the position of the positive real maximum of Dawson's integral D_+(x). 7
9, 2, 4, 1, 3, 8, 8, 7, 3, 0, 0, 4, 5, 9, 1, 7, 6, 7, 0, 1, 2, 8, 2, 3, 2, 7, 1, 5, 0, 4, 3, 4, 5, 9, 7, 5, 6, 9, 6, 2, 9, 1, 5, 5, 9, 9, 3, 5, 1, 6, 3, 9, 1, 7, 5, 9, 7, 8, 1, 0, 5, 2, 9, 8, 4, 9, 7, 5, 9, 5, 4, 0, 1, 6, 2, 1, 9, 3, 8, 8, 1, 6, 8, 5, 6, 2, 7, 7, 7, 1, 2, 1, 4, 5, 8, 4, 7, 3, 8, 5, 5, 6, 9, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..2000

Eric Weisstein's World of Mathematics, Dawson's Integral

Wikipedia, Dawson function

FORMULA

Equals 1/(2*A133842).

EXAMPLE

0.92413887300459176701...

MATHEMATICA

DawsonF[x_] := Sqrt[Pi]*Erfi[x]/(2*Exp[x^2]); x0 = x /. FindRoot[ DawsonF'[x], {x, 1}, WorkingPrecision -> 110]; RealDigits[x0][[1]][[1 ;; 105]] (* Jean-Fran├žois Alcover, Oct 26 2012, after Eric W. Weisstein *)

PROG

(PARI) Erfi(z) = -I*(1.0-erfc(I*z));

Dawson(z) = 0.5*sqrt(Pi)*exp(-z*z)*Erfi(z); \\ same as F(x)=D_+(x)

DDawson(z) = 1.0 - 2*z*Dawson(z); \\ Derivative of the above

x = solve(z=0.1, 2.0, real(DDawson(z))) \\ Stanislav Sykora, Sep 17 2014

CROSSREFS

Cf. A133842, A133843, A243433.

Sequence in context: A248321 A248320 A200282 * A099769 A176517 A020784

Adjacent sequences:  A133838 A133839 A133840 * A133842 A133843 A133844

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Sep 26 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 15:06 EDT 2017. Contains 285528 sequences.