login
A132779
Primes p such that 33 does not divide p^n - 2 for any n.
0
3, 5, 7, 11, 13, 19, 23, 31, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 89, 97, 103, 109, 113, 127, 131, 137, 139, 151, 157, 163, 179, 181, 191, 193, 197, 199, 211, 223, 229, 241, 251, 257, 263, 269, 271, 277, 283, 307, 311, 313, 317, 331, 337, 349, 353, 367
OFFSET
1,1
COMMENTS
Primes congruent to one of {1, 3, 4, 5, 7, 10, 11, 13, 14, 16, 19, 20, 23, 25, 26, 28, 31, 32} mod 33. [Charles R Greathouse IV, Dec 22 2011]
FORMULA
a(n) ~ (5/4) n log n. [Charles R Greathouse IV, Michael B. Porter and Arkadiusz Wesolowski, Dec 24 2011]
MATHEMATICA
Sort[Join[Transpose[FactorInteger[33]][[1]], Select[Prime[Range[73]], MemberQ[{1, 4, 5, 7, 10, 13, 14, 16, 19, 20, 23, 25, 26, 28, 31, 32}, Mod[#, 33]] &]]] (* Arkadiusz Wesolowski, Dec 24 2011 *)
PROG
(PARI) S=Set([1, 3, 4, 5, 7, 10, 11, 13, 14, 16, 19, 20, 23, 25, 26, 28, 31, 32]); forprime(p=2, 1e3, if(setsearch(S, p%33), print1(p", "))) \\ Charles R Greathouse IV, Dec 22 2011
CROSSREFS
Sequence in context: A179538 A216371 A095747 * A192869 A147513 A075323
KEYWORD
nonn,easy
AUTHOR
A.K. Devaraj, Aug 29 2007
EXTENSIONS
Edited by Arkadiusz Wesolowski, Dec 22 2011
a(8)-a(56) from Charles R Greathouse IV, Dec 22 2011
STATUS
approved