login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192869 Thin primes: odd primes p such that p+1 is a prime (or 1) times a power of two. 7
3, 5, 7, 11, 13, 19, 23, 31, 37, 43, 47, 61, 67, 73, 79, 103, 127, 151, 157, 163, 191, 193, 211, 223, 271, 277, 283, 313, 331, 367, 383, 397, 421, 457, 463, 487, 523, 541, 547, 607, 613, 631, 661, 673, 691, 733, 751, 757, 787, 823, 877, 907, 991, 997, 1051 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Broughan & Qizhi conjecture that a(n) << n (log n)^2, matching the lower bound they proved.

Sequence A206581 excludes the Mersenne primes (A000043), which are included here under the "or 1" case. - T. D. Noe, Mar 07 2012

REFERENCES

D. R. Heath-Brown, "Artin's conjecture for primitive roots", Quarterly Journal of Mathematics 37:1 (1986) pp. 27-38.

N. M. Timofeev, "The Hardy-Ramanujan and Halasz inequalities for shifted primes", Mathematical Notes 57:5 (1995), pp. 522-535.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Kevin Broughan and Zhou Qizhi, Flat primes and thin primes, Bulletin of the Australian Mathematical Society 82:2 (2010), pp. 282-292.

Qizhi Zhou, Multiply perfect numbers of low abundancy, PhD thesis (2010)

FORMULA

a(n) >> n (log n)^2.

MATHEMATICA

onePrimeQ[n_] := n == 1 || PrimeQ[n]; Select[Prime[Range[2, 1000]], onePrimeQ[(# + 1)/2^IntegerExponent[# + 1, 2]] &] (* T. D. Noe, Mar 06 2012 *)

PROG

(PARI) is(n)=n%2&&isprime(n)&&(isprime((n+1)>>valuation(n+1, 2)) || n+1==1<<valuation(n+1, 2))

CROSSREFS

Subsequence of A192868.

Sequence in context: A216371 A095747 A132779 * A147513 A075323 A020575

Adjacent sequences:  A192866 A192867 A192868 * A192870 A192871 A192872

KEYWORD

nonn

AUTHOR

Charles R Greathouse IV, Jul 11 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 01:20 EDT 2019. Contains 321444 sequences. (Running on oeis4.)