login
3*A007318 - 2*A103451 as infinite lower triangular matrices.
6

%I #20 Jun 16 2022 06:07:19

%S 1,1,1,1,6,1,1,9,9,1,1,12,18,12,1,1,15,30,30,15,1,1,18,45,60,45,18,1,

%T 1,21,63,105,105,63,21,1,1,24,84,168,210,168,84,24,1,1,27,108,252,378,

%U 378,252,108,27,1,1,30,135,360,630,756,630,360,135,30,1

%N 3*A007318 - 2*A103451 as infinite lower triangular matrices.

%F a(n) = 3*A007318(n) - 2*A103451(n).

%F T(n,k) = 3*C(n,k)-2*(C(n,k-n)+C(n,-k)-C(0,n+k)), 0<=k<=n. [_Eric Werley_, Jul 01 2011]

%e First few rows of the triangle are:

%e 1;

%e 1, 1;

%e 1, 6, 1;

%e 1, 9, 9, 1;

%e 1, 12, 18, 12, 1;

%e 1, 15, 30, 30, 15, 1;

%e 1, 28, 45, 60, 45, 18, 1;

%e ...

%o (PARI) T(n, k) = my(bnk = binomial(n, k)); 3*bnk - 2*(bnk==1); \\ _Michel Marcus_, Jun 16 2022

%Y Cf. A007318, A103451, A131128 (row sums)

%K nonn,tabl,easy

%O 0,5

%A _Gary W. Adamson_, Aug 08 2007

%E Corrected and extended by _Roger L. Bagula_, Nov 02 2008