login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132004 Expansion of (1 - phi(q^3) / phi(q) * phi(-q^2) * phi(-q^6)) / 2 in powers of q where phi() is a Ramanujan theta function. 2
1, -1, 1, -1, 2, -1, 0, -1, 1, -2, 0, -1, 2, 0, 2, -1, 2, -1, 0, -2, 0, 0, 0, -1, 3, -2, 1, 0, 2, -2, 0, -1, 0, -2, 0, -1, 2, 0, 2, -2, 2, 0, 0, 0, 2, 0, 0, -1, 1, -3, 2, -2, 2, -1, 0, 0, 0, -2, 0, -2, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, 3, 0, 0, -2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Equation (32.72).

LINKS

Table of n, a(n) for n=1..78.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of (1 - eta(q)^2 * eta(q^4) * eta(q^6)^7 / (eta(q^2)^3 * eta(q^3)^2 * eta(q^12)^3)) / 2 in powers of q.

a(n) is multiplicative with a(2^e) = 2*0^e -1, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4).

G.f.: Sum_{k>0} x^k / (1 + x^k) * kronecker( -36, k).

a(3*n) = a(n). -2 * a(n) = A132003(n) unless n=0. a(2*n) = - A035154(n). a(2*n + 1) = A125079(n).

a(n) = (-1)^n * A035154(n). a(12*n + 7) = a(12*n + 11) = 0. - Michael Somos, Nov 01 2015

a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). a(4*n + 1) = A008441(n). a(4*n + 2) = - A125079(n). - Michael Somos, Nov 01 2015

a(6*n) = - A035154(n). a(6*n + 2) = - A122865(n). a(6*n + 4) = - A122856(n). - ~~~

a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). - Michael Somos, Nov 01 2015

EXAMPLE

G.f. = x - x^2 + x^3 - x^4 + 2*x^5 - x^6 - x^8 + x^9 - 2*x^10 - x^12 + 2*x^13 + ...

MATHEMATICA

a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^(n + #) KroneckerSymbol[ -36, #] &]]; (* Michael Somos, Nov 01 2015 *)

a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 5, -(-1)^#, Mod[#, 4] == 3, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)]; (* Michael Somos, Nov 01 2015 *)

PROG

(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(n+d) * kronecker( -36, d)))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)^7 / (eta(x^2 + A)^3 * eta(x^3 + A)^2 * eta(x^12 + A)^3)) / 2, n))};

(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, p==2, -1, p%4==1, e+1, 1-e%2)))};

CROSSREFS

Cf. A008441, A035154, A053692, A122856, A122865, A125079, A132003, A258277, A258278.

Sequence in context: A211452 A035188 A066295 * A035154 A113446 A121450

Adjacent sequences:  A132001 A132002 A132003 * A132005 A132006 A132007

KEYWORD

sign,mult

AUTHOR

Michael Somos, Aug 06 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 04:17 EST 2016. Contains 279034 sequences.