This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131193 Period 6: repeat [0, 1, -3, 3, -1, 0]. 2
 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0, 0, 1, -3, 3, -1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1,-1). FORMULA a(n) = (1/6)*{-[(n+1) mod 6]+4*[(n+2) mod 6]-6*[(n+3) mod 6]+4*[(n+4) mod 6]-[(n+5) mod 6]}. - Paolo P. Lava, Oct 24 2007 G.f.: x*(x-1)^2/((x+1)*(x^2-x+1)*(x^2+x+1)). - R. J. Mathar, Nov 14 2007 From Wesley Ivan Hurt, Jun 20 2016: (Start) a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) = 0 for n>4. a(n) = sin(n*Pi/6) * (2*sqrt(3)*cos(n*Pi/6) + 3*sqrt(3)*cos(n*Pi/2) - sin(n*Pi/2) + 8*sin(5*n*Pi/6))/3. (End) MAPLE A131193:=n->[0, 1, -3, 3, -1, 0][(n mod 6)+1]: seq(A131193(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016 MATHEMATICA PadRight[{}, 100, {0, 1, -3, 3, -1, 0}] (* Wesley Ivan Hurt, Jun 20 2016 *) PROG (MAGMA) &cat [[0, 1, -3, 3, -1, 0]^^20]; // Wesley Ivan Hurt, Jun 20 2016 CROSSREFS Sequence in context: A051343 A261477 A205826 * A130632 A229158 A290454 Adjacent sequences:  A131190 A131191 A131192 * A131194 A131195 A131196 KEYWORD sign,easy AUTHOR Paul Curtz, Sep 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 00:10 EDT 2019. Contains 324367 sequences. (Running on oeis4.)