

A130748


Place n points on each of the three sides of a triangle, 3n points in all; a(n) = number of nondegenerate triangles that can be constructed using these points (plus the 3 original vertices) as vertices.


5



17, 72, 190, 395, 711, 1162, 1772, 2565, 3565, 4796, 6282, 8047, 10115, 12510, 15256, 18377, 21897, 25840, 30230, 35091, 40447, 46322, 52740, 59725, 67301, 75492, 84322, 93815, 103995, 114886, 126512, 138897, 152065, 166040, 180846, 196507, 213047, 230490
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Define b(1)=1 and b(n)=a(n1) for n>1. Then (b(n)) is the principal diagonal of the convolution array A213833.  Clark Kimberling, Jul 04 2012


LINKS

Table of n, a(n) for n=1..38.
Index entries for linear recurrences with constant coefficients, signature (4,6,4,1).


FORMULA

a(n) = C(3*(n+1), 3)  3*C(n+2, 3) where n>0.
a(n) = (n+1)*A002414(n+1)  n*A002414(n).  Bruno Berselli, Dec 11 2012
a(n) = (8n^3 + 15n^2 + 9n + 2)/2 \\ Charles R Greathouse IV, Feb 14 2013


EXAMPLE

5 points are put on each side of a triangle (n = 5); we then have 18 vertices to construct with: 5 * 3 + 3 originals. The number of total arrangements = combi(18,3) : combi[3(n+1),3]. But these include degenerates along the 3 sides: 7 points on each side, so combi(7,3) on each side : 3 * combi[n+2, 3] combi[18,3]  3 * combi[7,3] = 816  105 = 711.


MAPLE

A130748:=n>(8*n^3 + 15*n^2 + 9*n + 2)/2; seq(A130748(n), n=1..100); # Wesley Ivan Hurt, Jan 28 2014


MATHEMATICA

Table[(8 n^3 + 15 n^2 + 9 n + 2)/2, {n, 100}] (* Wesley Ivan Hurt, Jan 28 2014 *)


PROG

(PARI) a(n)=4*n^3+n*(15*n+9)/2+1 \\ Charles R Greathouse IV, Feb 14 2013


CROSSREFS

Cf. A002414, A213833, A220084 (for a list of numbers of the form n*P(k,n)(n1)*P(k,n1), where P(k,n) is the nth kgonal pyramidal number).
Cf. A260260 (comment). [Bruno Berselli, Jul 22 2015]
Sequence in context: A214530 A087514 A119625 * A131692 A157864 A229496
Adjacent sequences: A130745 A130746 A130747 * A130749 A130750 A130751


KEYWORD

nonn,easy


AUTHOR

Denis Borris, Jul 12 2007


EXTENSIONS

More terms from Wesley Ivan Hurt, Jan 28 2014


STATUS

approved



