login
A130210
Triangle read by rows: matrix product A051731 * A130209.
1
1, 1, 2, 1, 0, 2, 1, 2, 0, 3, 1, 0, 0, 0, 2, 1, 2, 2, 0, 0, 4, 1, 0, 0, 0, 0, 0, 2, 1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 2, 0, 0, 0, 0, 0, 3, 1, 2, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 3, 0, 4, 0, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2
OFFSET
1,3
FORMULA
Inverse Moebius transform of A130209.
T(n,n) = A000005(n).
EXAMPLE
First few rows of the triangle are:
1;
1, 2;
1, 0, 2;
1, 2, 0, 3;
1, 0, 0, 0, 2;
1, 2, 2, 0, 0, 4;
1, 0, 0, 0, 0, 0, 2;
...
MAPLE
A130210 := proc(n, k)
add( A051731(n, j)*A130209(j, k), j=k..n) ;
end proc:
seq(seq(A130210(n, k), k=1..n), n=1..15) ; # R. J. Mathar, Aug 06 2016
CROSSREFS
Cf. A000005, A007425 (row sums).
Sequence in context: A230025 A330374 A207869 * A236459 A190427 A287108
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, May 17 2007
STATUS
approved