login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129991
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+241)^2 = y^2.
6
0, 23, 620, 723, 840, 4223, 4820, 5499, 25200, 28679, 32636, 147459, 167736, 190799, 860036, 978219, 1112640, 5013239, 5702060, 6485523, 29219880, 33234623, 37800980, 170306523, 193706160, 220320839, 992619740, 1129002819, 1284124536, 5785412399, 6580311236
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+241, y).
Corresponding values y of solutions (x, y) are in A159565.
For the generic case x^2+(x+p)^2 = y^2 with p = 2*m^2-1 a (prime) number in A066436 see A118673 or A129836.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (243+22*sqrt(2))/241 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (137283+87958*sqrt(2))/241^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3)-a(n-6)+482 for n > 6; a(1)=0, a(2)=23, a(3)=620, a(4)=723, a(5)=840, a(6)=4223.
G.f.: x*(23+597*x+103*x^2-21*x^3-199*x^4-21*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 241*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 23, 620, 723, 840, 4223, 4820}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2012 *)
PROG
(PARI) {forstep(n=0, 500000000, [3, 1], if(issquare(2*n^2+482*n+58081), print1(n, ", ")))}
CROSSREFS
Cf. A159565, A066436, A118673, A118674, A129836, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159566 (decimal expansion of (243+22*sqrt(2))/241), A159567 (decimal expansion of (137283+87958*sqrt(2))/241^2).
Sequence in context: A294995 A142750 A202667 * A374304 A265681 A023295
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 14 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, Apr 16 2009
STATUS
approved