The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118674 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 31)^2 = y^2. 16
 0, 9, 60, 93, 140, 429, 620, 893, 2576, 3689, 5280, 15089, 21576, 30849, 88020, 125829, 179876, 513093, 733460, 1048469, 2990600, 4274993, 6111000, 17430569, 24916560, 35617593, 101592876, 145224429, 207594620, 592126749, 846430076 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also values x of Pythagorean triples (x, x+31, y). Corresponding values y of solutions (x, y) are in A157646. For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a (prime) number in A066436 see A118673 or A129836. lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2). lim_{n -> infinity} a(n)/a(n-1) = (33 + 8*sqrt(2))/31 for n mod 3 = {1, 2}. lim_{n -> infinity} a(n)/a(n-1) = (1539 + 850*sqrt(2))/31^2 for n mod 3 = 0. REFERENCES Mohammad K. Azarian, Diophantine Pair, Problem B-881, Fibonacci Quarterly, Vol. 37, No. 3, August 1999, pp. 277-278. Solution appeared in Vol. 38, No. 2, May 2000, pp. 183-184. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1). FORMULA a(n) = 6*a(n-3) - a(n-6) + 62 for n > 6; a(1)=0, a(2)=9, a(3)=60, a(4)=93, a(5)=140, a(6)=429. G.f.: x*(9 + 51*x + 33*x^2 - 7*x^3 - 17*x^4 - 7*x^5)/((1-x)*(1 - 6*x^3 + x^6)). a(3*k + 1) = 31*A001652(k) for k >= 0. MATHEMATICA ClearAll[a]; Evaluate[Array[a, 6]] = {0, 9, 60, 93, 140, 429}; a[n_] := a[n] = 6*a[n-3] - a[n-6] + 62; Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Dec 27 2011, after given formula *) LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 9, 60, 93, 140, 429, 620}, 50] (* G. C. Greubel, Mar 31 2018 *) PROG (PARI) {forstep(n=0, 850000000, [1, 3], if(issquare(2*n^2+62*n+961), print1(n, ", ")))}; (MAGMA) I:=[0, 9, 60, 93, 140, 429, 620]; [n le 7 select I[n] else Self(n-1) - 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018 CROSSREFS cf. A157646, A066436 (primes of the form 2*n^2-1), A118673, A129836, A001652, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3 + 2*sqrt(2)), A157647 (decimal expansion of (33 + 8*sqrt(2))/31), A157648 (decimal expansion of (1539 + 850*sqrt(2))/31^2). Sequence in context: A039929 A099333 A098327 * A268972 A288962 A074431 Adjacent sequences:  A118671 A118672 A118673 * A118675 A118676 A118677 KEYWORD nonn AUTHOR Mohamed Bouhamida, May 19 2006 EXTENSIONS Edited by Klaus Brockhaus, Mar 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 07:59 EDT 2020. Contains 333079 sequences. (Running on oeis4.)