login
A129808
Decimal expansion of constant equal to concatenated nonprimes.
5
1, 4, 6, 8, 9, 1, 0, 1, 2, 1, 4, 1, 5, 1, 6, 1, 8, 2, 0, 2, 1, 2, 2, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 3, 0, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 8, 3, 9, 4, 0, 4, 2, 4, 4, 4, 5, 4, 6, 4, 8, 4, 9, 5, 0, 5, 1, 5, 2, 5, 4, 5, 5, 5, 6, 5, 7, 5, 8, 6, 0, 6, 2, 6, 3, 6, 4, 6, 5, 6, 6, 6, 8, 6, 9, 7, 0, 7, 2, 7, 4, 7, 5, 7, 6
OFFSET
1,2
COMMENTS
A theorem of Copeland & Erdős proves that this constant is 10-normal. - Charles R Greathouse IV, Feb 06 2015
LINKS
Demi Allen, Sky Brewer, Distribution Of Sequences Generated By Certain Simply-Constructed Normal Numbers, arXiv:1511.01789 [math.NT], 2015.
A. H. Copeland and P. Erdős, Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), pp. 857-860.
EXAMPLE
1.468910121415161820212224252627283032333435363839404244454648495...
MATHEMATICA
Flatten[IntegerDigits/@With[{nn=80}, Complement[Range[nn], Prime[ Range[ PrimePi[nn]]]]]] (* Harvey P. Dale, Sep 16 2011 *)
PROG
(PARI) print1(1); forcomposite(n=4, 76, d=digits(n); for(i=1, #d, print1(", "d[i]))) \\ Charles R Greathouse IV, Feb 06 2015
CROSSREFS
Cf. A033308 (decimal expansion of Copeland-Erdos constant: concatenate primes).
Sequence in context: A338028 A110750 A275589 * A330384 A077649 A308375
KEYWORD
cons,nonn,base
AUTHOR
Alexander Adamchuk, May 19 2007
STATUS
approved