

A129167


Number of base pyramids in all skew Dyck paths of semilength n.


3



0, 1, 3, 9, 30, 109, 420, 1685, 6960, 29391, 126291, 550359, 2426502, 10803801, 48507843, 219377949, 998436792, 4569488371, 21016589073, 97090411019, 450314942682, 2096122733211, 9788916220518, 45850711498859, 215348942668680, 1013979873542689, 4785437476592805, 22633143884165985, 107258646298581390
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the xaxis, consists of steps U=(1,1)(up), D=(1,1)(down) and L=(1,1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. A pyramid in a skew Dyck word (path) is a factor of the form u^h d^h, h being the height of the pyramid. A base pyramid is a pyramid starting on the xaxis.
a(n) = A091699(n+1). Partial sums of A033321(n), n = 1, 2, 3, ....
a(n+1) is the number of 3colored Motzkin paths of length n with no peaks at level 1.  José Luis Ramírez Ramírez, Mar 31 2013


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 21912203


FORMULA

a(n) = Sum_{k=0..n} k*A129165(n,k).
G.f.: (1  3*z  sqrt(1  6*z + 5*z^2))/(z*(3  3*z  sqrt(1  6*z + 5*z^2))).
Recurrence: 2*(n+1)*a(n) = (13*n3)*a(n1)  4*(4*n3)*a(n2) + 5*(n1)*a(n3) .  Vaclav Kotesovec, Oct 20 2012
a(n) ~ 5^(n+5/2)/(72*sqrt(Pi)*n^(3/2)) .  Vaclav Kotesovec, Oct 20 2012


EXAMPLE

a(2)=3 because in the paths (UD)(UD), (UUDD) and UUDL we have altogether 3 base pyramids (shown between parentheses).


MAPLE

G:=(13*zsqrt(16*z+5*z^2))/z/(33*zsqrt(16*z+5*z^2)): Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=0..27);


MATHEMATICA

CoefficientList[Series[(13*xSqrt[16*x+5*x^2])/(x*(33*xSqrt[16*x+5*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)


PROG

(PARI) z='z+O('z^66); concat([0], Vec((13*zsqrt(16*z+5*z^2))/z/(33*zsqrt(16*z+5*z^2)))) \\ Joerg Arndt, Aug 27 2014


CROSSREFS

Cf. A033321, A091699, A129165.
Sequence in context: A032125 A246472 A091699 * A151472 A107379 A117428
Adjacent sequences: A129164 A129165 A129166 * A129168 A129169 A129170


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Apr 04 2007


STATUS

approved



