This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107379 Number of ways to write n^2 as the sum of n odd numbers, disregarding order. 12
 1, 1, 1, 3, 9, 30, 110, 436, 1801, 7657, 33401, 148847, 674585, 3100410, 14422567, 67792847, 321546251, 1537241148, 7400926549, 35854579015, 174677578889, 855312650751, 4207291811538, 20782253017825, 103048079556241, 512753419159803, 2559639388956793 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Motivated by the fact that the n-th square is equal to the sum of the first n odd numbers. Also the number of partitions of n^2 into n distinct parts. a(3) = 3: [1,2,6], [1,3,5], [2,3,4]. - Alois P. Heinz, Jan 20 2011 Also the number of partitions of n*(n-1)/2 into parts not greater than n. - Paul D. Hanna, Feb 05 2012 Also the number of partitions of n*(n+1)/2 into n parts. - J. Stauduhar, Sep 05 2017 LINKS Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..500 (first 200 terms from Alois P. Heinz) FORMULA a(n) = A008284((n^2+n)/2,n) = A008284(A000217(n),n). - Max Alekseyev, Sep 25 2009 a(n) = [x^(n*(n-1)/2)] Product_{k=1..n} 1/(1 - x^k). - Paul D. Hanna, Feb 05 2012 a(n) ~ c * d^n / n^2, where d = 5.400871904118154152466091119104270052029... = A258234, c = 0.155212227152682180502977404265024265... . - Vaclav Kotesovec, Sep 07 2014 EXAMPLE For example, 9 can be written as a sum of three odd numbers in 3 ways: 1+1+7, 1+3+5 and 3+3+3. MAPLE f := proc (n, k) option remember; if n = 0 and k = 0 then return 1 end if; if n <= 0 or n < k then return 0 end if; if `mod`(n+k, 2) = 1 then return 0 end if; if k = 1 then return 1 end if; return procname(n-1, k-1) + procname(n-2*k, k) end proc; seq(f(k^2, k), k=0..20); MATHEMATICA Table[SeriesCoefficient[Product[1/(1-x^k), {k, 1, n}], {x, 0, n*(n-1)/2}], {n, 0, 20}] (* Vaclav Kotesovec, May 25 2015 *) PROG (PARI) {a(n)=polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^(n*(n-1)/2)))), n*(n-1)/2)} /* Paul D. Hanna */ CROSSREFS Cf. A072243, A152140, A258191, A258192, A258234, A281489. Sequence in context: A091699 A129167 A151472 * A117428 A134168 A124427 Adjacent sequences:  A107376 A107377 A107378 * A107380 A107381 A107382 KEYWORD nonn,easy AUTHOR David Radcliffe, Sep 25 2009 EXTENSIONS Arguments in the Maple program swapped and 4 terms added by R. J. Mathar, Oct 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 16:44 EST 2018. Contains 318049 sequences. (Running on oeis4.)