login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128080 Triangle, read by rows of n(n-1)+1 terms, of coefficients of q in the q-analog of the odd double factorials: T(n,k) = [q^k] Product_{j=1..n} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1. 11
1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 14, 15, 14, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 45, 60, 74, 86, 94, 97, 94, 86, 74, 60, 45, 31, 19, 10, 4, 1, 1, 5, 15, 34, 65, 110, 170, 244, 330, 424, 521, 614, 696, 760, 801, 815, 801, 760, 696, 614, 521, 424, 330, 244, 170 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

See A128084 for the triangle of coefficients of q in the q-analog of the even double factorials.

LINKS

Paul D. Hanna, Rows n=0..31 of triangle, in flattened form.

Eric Weisstein's World of Mathematics, q-Factorial from MathWorld.

EXAMPLE

The row sums form A001147, the odd double factorial numbers:

[1,1,3,15,105,945,10395,135135, ..., (2n-1)!!, ...].

Triangle begins:

1;

1;

1,1,1;

1,2,3,3,3,2,1;

1,3,6,9,12,14,15,14,12,9,6,3,1;

1,4,10,19,31,45,60,74,86,94,97,94,86,74,60,45,31,19,10,4,1;

1,5,15,34,65,110,170,244,330,424,521,614,696,760,801,815,801,760,696,614,521,424,330,244,170,110,65,34,15,5,1;

PROG

(PARI) T(n, k)=if(k<0 || k>n*(n-1), 0, if(n==0, 1, polcoeff(prod(j=1, n, (1-q^(2*j-1))/(1-q)), k, q)))

for(n=0, 8, for(k=0, n*(n-1), print1(T(n, k), ", ")); print(""))

CROSSREFS

Cf. A001147 ((2n-1)!!); A128081 (central terms), A128082 (diagonal), A128083 (row squared sums); A128084.

Sequence in context: A140733 A143605 A098418 * A062187 A031283 A293229

Adjacent sequences:  A128077 A128078 A128079 * A128081 A128082 A128083

KEYWORD

nonn,tabf

AUTHOR

Paul D. Hanna, Feb 14 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 11:49 EDT 2019. Contains 321448 sequences. (Running on oeis4.)