This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128079 a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1), where A000984 is the central binomial coefficients and A001263 is the Narayana triangle. 1
 1, 3, 13, 69, 411, 2633, 17739, 124029, 892327, 6567285, 49235715, 374841195, 2890994445, 22545855855, 177524073021, 1409591810133, 11275693221519, 90792020672429, 735367765159347, 5987665336600683, 48987680485918149 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = Sum_{k=0..n} C(2k,k)*C(n,k)*C(n+1,k)/(k+1). Recurrence: (n+1)*(n+2)*a(n) = (7*n^2+11*n+6)*a(n-1) + 3*(7*n^2-19*n+6)*a(n-2) - 27*(n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012 a(n) ~ 3^(2*n+7/2)/(8*Pi*n^2) . - Vaclav Kotesovec, Oct 20 2012 EXAMPLE Illustrate a(n) = Sum_{k=0..n} A000984(k)*A001263(n+1,k+1) by: a(2) = 1*(1) + 2*(3) + 6*(1) = 13; a(3) = 1*(1) + 2*(6) + 6*(6) + 20*(1) = 69; a(4) = 1*(1) + 2*(10)+ 6*(20)+ 20*(10)+ 70*(1) = 411. The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins: 1; 1, 1; 1, 3, 1; 1, 6, 6, 1; 1, 10, 20, 10, 1; 1, 15, 50, 50, 15, 1; ... MATHEMATICA Table[Sum[Binomial[2*k, k]*Binomial[n, k]*Binomial[n+1, k]/(k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 20 2012 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(2*k, k)*binomial(n, k)*binomial(n+1, k)/(k+1))} CROSSREFS Cf. A000984, A001263. Sequence in context: A020107 A284718 A284719 * A074534 A153395 A243688 Adjacent sequences:  A128076 A128077 A128078 * A128080 A128081 A128082 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 23 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 08:37 EDT 2019. Contains 322209 sequences. (Running on oeis4.)