OFFSET
1,30
COMMENTS
Part of the phi_k family of sequences defined by a(1)=1,a(2)=...=a(k)=0, a(n)=a(n-k)+a(n-k+1) for n>k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence.
Apart from offset same as A017877. - Georg Fischer, Oct 07 2018
REFERENCES
S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007. [Apparently unpublished as of May 2016]
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1).
FORMULA
Binet-like formula: a(n) = Sum_{i=1..10} (r_i^n)/(9(r_i)^2+10(r_i)) where r_i is a root of x^10=x+1.
G.f.: x*(1-x)*(1+x+x^2)*(1+x^3+x^6) / (1-x^9-x^10). - Colin Barker, May 30 2016
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 100] (* Harvey P. Dale, Jun 18 2017 *)
PROG
(PARI) Vec(x*(1-x)*(1+x+x^2)*(1+x^3+x^6)/(1-x^9-x^10) + O(x^100)) \\ Colin Barker, May 30 2016
(GAP) a:=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0];; for n in [11..90] do a[n]:=a[n-9]+a[n-10]; od; a; # Muniru A Asiru, Oct 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007
STATUS
approved