This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127843 a(1) = 1, a(2) = ... = a(9) = 0, a(n) = a(n-9)+a(n-8) for n>9. 1
 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 2, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,27 COMMENTS Part of the phi_k family of sequences defined by a(1)=1, a(2)=...=a(k)=0, a(n)=a(n-k)+a(n-k+1) for n>k. phi_2 is a shift of the Fibonacci sequence and phi_3 is a shift of the Padovan sequence. Apart from offset same as A017867. - Georg Fischer, Oct 07 2018 REFERENCES S. Suter, Binet-like formulas for recurrent sequences with characteristic equation x^k=x+1, preprint, 2007. [Apparently unpublished as of May 2016] LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1,1). FORMULA Binet-like formula: a(n) = Sum_{i=1..9} (r_i^n)/(8(r_i)^2+9(r_i)) where r_i is a root of x^9=x+1. G.f.: x*(1-x)*(1+x)*(1+x^2)*(1+x^4) / (1-x^8-x^9). - Colin Barker, May 30 2016 MATHEMATICA LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0}, 120] (* Harvey P. Dale, Jun 15 2017 *) CoefficientList[Series[(1-x)*(1+x)*(1+x^2)*(1+x^4) / (1-x^8-x^9), {x, 0, 50}], x] (* Stefano Spezia, Oct 08 2018 *) PROG (PARI) Vec(x*(1-x)*(1+x)*(1+x^2)*(1+x^4)/(1-x^8-x^9) + O(x^100)) \\ Colin Barker, May 30 2016 (GAP) a:=[1, 0, 0, 0, 0, 0, 0, 0, 0];;  for n in [10..90] do a[n]:=a[n-8]+a[n-9]; od; a; # Muniru A Asiru, Oct 07 2018 CROSSREFS Sequence in context: A284095 A279593 A017867 * A154234 A091396 A173677 Adjacent sequences:  A127840 A127841 A127842 * A127844 A127845 A127846 KEYWORD nonn,easy AUTHOR Stephen Suter (sms5064(AT)psu.edu), Apr 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 04:44 EST 2019. Contains 329248 sequences. (Running on oeis4.)