login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127698
Sum of n-th triangular number and its reversal.
1
0, 2, 6, 12, 11, 66, 33, 110, 99, 99, 110, 132, 165, 110, 606, 141, 767, 504, 342, 281, 222, 363, 605, 948, 303, 848, 504, 1251, 1010, 969, 1029, 1190, 1353, 726, 1190, 666, 1332, 1010, 888, 867, 848, 1029, 1212, 1595, 1089, 6336, 2882, 9339, 7887, 6446
OFFSET
0,2
COMMENTS
Gupta states in Prime Curios: "The smallest odd prime which can be represented as sum of a triangular number and its reverse, i.e., 10 + 01 = 11."
LINKS
G. L. Honaker, Jr. and Chris Caldwell, eds., 11.
FORMULA
a(n) = A000217(n) + A004086(A000217(n)).
EXAMPLE
a(0) = 0 + 0 = 0.
a(1) = 1 + 1 = 2 is the even prime.
a(4) = 10 + 1 = 11 is an odd prime.
a(5) = 15 + 51 = 66 = A000217(10).
a(19) = 190 + 91 = 281 is an odd prime.
a(24) = 300 + 3 = 303.
a(35) = 630 + 36 = 666 = A000217(36).
MAPLE
a:= n-> (p-> parse(cat(p, "+", seq(p[-i],
i=1..length(p)))))(""||(n*(n+1)/2)):
seq(a(n), n=0..60); # Alois P. Heinz, Jun 19 2016
MATHEMATICA
rev[n_] := FromDigits@ Reverse@ IntegerDigits@ n; t[n_] := n (n + 1)/2; Table[t@ n + rev@ t@ n, {n, 0, 49}] (* Giovanni Resta, Jun 19 2016 *)
#+IntegerReverse[#]&/@Accumulate[Range[0, 50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 20 2016 *)
CROSSREFS
Sequence in context: A009230 A354421 A069491 * A130503 A278232 A074385
KEYWORD
base,easy,look,nonn
AUTHOR
Jonathan Vos Post, Apr 03 2007
EXTENSIONS
Edited by Giovanni Resta, Jun 19 2016
STATUS
approved