

A126694


Expansion of g.f.: 1/(1  7*x*c(x)), where c(x) is the g.f. for A000108.


9



1, 7, 56, 455, 3710, 30282, 247254, 2019087, 16488710, 134656130, 1099686056, 8980749862, 73342721956, 598965319960, 4891549246290, 39947649057855, 326239122661830, 2664286127154330, 21758336553841440, 177693081299126610
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The Hankel transform of this sequence is 7^n = [1, 7, 49, 343, 2401, ...] . The Hankel transform of the aerated sequence with g.f. 1/(1  7*x^2*c(x^2)) is also 7^n.
Numbers have the same parity as the Catalan numbers, that is, a(n) is even except for n of the form 2^m  1. Follows from c(x) = 1/(1  x*c(x)) == 1/(1  7*x*c(x)) (mod 2).  Peter Bala, Jul 24 2016


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000


FORMULA

a(0) = 1, a(n) = (49*a(n1)  7*A000108(n1))/6 for n >= 1.
a(n) = Sum_{k = 0..n} A106566(n,k)*7^k.
a(n) = Sum_{k = 0..n} A039599(n,k)*6^k.
a(n) ~ 5 * 7^(2*n) / 6^(n+1).  Vaclav Kotesovec, Nov 29 2021


MATHEMATICA

CoefficientList[Series[2/(5+7*Sqrt[14*x]), {x, 0, 30}], x] (* G. C. Greubel, May 05 2019 *)


PROG

(PARI) my(x='x+O('x^30)); Vec(2/(7*sqrt(14*x) 5)) \\ G. C. Greubel, May 05 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(7*Sqrt(14*x) 5) )); // G. C. Greubel, May 05 2019
(Sage) (2/(7*sqrt(14*x) 5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019


CROSSREFS

Cf. A000108, A000984, A007854, A076035, A076036, A127628, A115970.
Sequence in context: A152776 A155197 A147839 * A305198 A264912 A323216
Adjacent sequences: A126691 A126692 A126693 * A126695 A126696 A126697


KEYWORD

nonn,easy


AUTHOR

Philippe Deléham, Feb 14 2007


EXTENSIONS

a(16) corrected by G. C. Greubel, May 05 2019


STATUS

approved



