The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126694 Expansion of g.f.: 1/(1 - 7*x*c(x)), where c(x) is the g.f. for A000108. 9
 1, 7, 56, 455, 3710, 30282, 247254, 2019087, 16488710, 134656130, 1099686056, 8980749862, 73342721956, 598965319960, 4891549246290, 39947649057855, 326239122661830, 2664286127154330, 21758336553841440, 177693081299126610 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The Hankel transform of this sequence is 7^n = [1, 7, 49, 343, 2401, ...] . The Hankel transform of the aerated sequence with g.f. 1/(1 - 7*x^2*c(x^2)) is also 7^n. Numbers have the same parity as the Catalan numbers, that is, a(n) is even except for n of the form 2^m - 1. Follows from c(x) = 1/(1 - x*c(x)) == 1/(1 - 7*x*c(x)) (mod 2). - Peter Bala, Jul 24 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(0) = 1, a(n) = (49*a(n-1) - 7*A000108(n-1))/6 for n >= 1. a(n) = Sum_{k = 0..n} A106566(n,k)*7^k. a(n) = Sum_{k = 0..n} A039599(n,k)*6^k. a(n) ~ 5 * 7^(2*n) / 6^(n+1). - Vaclav Kotesovec, Nov 29 2021 MATHEMATICA CoefficientList[Series[2/(-5+7*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 05 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec(2/(7*sqrt(1-4*x) -5)) \\ G. C. Greubel, May 05 2019 (Magma) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(7*Sqrt(1-4*x) -5) )); // G. C. Greubel, May 05 2019 (Sage) (2/(7*sqrt(1-4*x) -5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019 CROSSREFS Cf. A000108, A000984, A007854, A076035, A076036, A127628, A115970. Sequence in context: A152776 A155197 A147839 * A305198 A264912 A323216 Adjacent sequences: A126691 A126692 A126693 * A126695 A126696 A126697 KEYWORD nonn,easy AUTHOR Philippe Deléham, Feb 14 2007 EXTENSIONS a(16) corrected by G. C. Greubel, May 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 18:25 EST 2022. Contains 358539 sequences. (Running on oeis4.)