login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126554
Arithmetic mean of two consecutive balanced primes (of order one).
7
29, 105, 165, 192, 234, 260, 318, 468, 578, 600, 630, 693, 840, 962, 1040, 1113, 1155, 1205, 1295, 1439, 1629, 1750, 1830, 2097, 2352, 2547, 2790, 2933, 3135, 3310, 3475, 3685, 3873, 4211, 4433, 4527, 4627, 4674, 4842, 5050, 5110, 5208, 5345, 5390, 5478
OFFSET
1,1
COMMENTS
Might be called interprimes of order two, since the arithmetic means of two consecutive odd primes (A024675) sometimes are called interprimes.
Balanced primes of order two (A082077) and doubly balanced primes (A051795) have different definitions.
For primes in this sequence (prime interprimes of order two) see A126555.
LINKS
Muniru A Asiru and Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Muniru A Asiru)
FORMULA
a(n) = (A006562(n+1)+A006562(n))/2.
MATHEMATICA
b = {}; a = {}; Do[If[PrimeQ[((Prime[n + 2] + Prime[n + 1])/2 + (Prime[n + 1] + Prime[n])/2)/2], AppendTo[a, ((Prime[n + 2] + Prime[n + 1])/2 + (Prime[n + 1] + Prime[n])/2)/2]], {n, 1, 1000}]; Do[AppendTo[b, (a[[k + 1]] + a[[k]])/2], {k, 1, Length[a] - 1}]; b
PROG
(PARI) {m=6000; a=0; p=2; q=3; r=5; while(r<=m, if((p+r)/2==q, if(a>0, print1((a+q)/2, ", ")); a=q); p=q; q=r; r=nextprime(r+1))} \\ Klaus Brockhaus, Jan 05 2007
(GAP) P:=Filtered([1..6000], IsPrime);; P1:=List(Filtered(List([0..Length(P)-3], k->List([1..3], j->P[j+k])), i->Sum(i)/3=i[2]), m->m[2]);;
a:=List([1..Length(P1)-1], n->(P1[n+1]+P1[n])/2); # Muniru A Asiru, Mar 31 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 27 2006
EXTENSIONS
Edited by Klaus Brockhaus, Jan 05 2007
STATUS
approved