OFFSET
0,1
COMMENTS
First differences of A079588.
6*a(n) - 5 is a square. Therefore, this is the quadrisection of the sequence which lists the numbers m such that 6*m-5 is a square (without 1): 1, 5, 9, 21, 29, 49, 61, 89, 105, 141, 161, 205, 229, ... . [Bruno Berselli, Jun 08 2015]
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: (29 + 18*x + x^2)/(1 - x)^3.
MATHEMATICA
Table[24 n^2 + 52 n + 29, {n, 0, 50}] (* Bruno Berselli, Jun 08 2015 *)
PROG
(Haskell)
a258721 n = 4 * n * (6 * n + 13) + 29
(PARI) vector(50, n, n--; 24*n^2+52*n+29) \\ Bruno Berselli, Jun 08 2015
(Sage) [24*n^2+52*n+29 for n in (0..50)] # Bruno Berselli, Jun 08 2015
(Magma) [24*n^2+52*n+29: n in (0..50)] // Bruno Berselli, Jun 08 2015
(Maxima) makelist(24*n^2+52*n+29, n, 0, 50); /* Bruno Berselli, Jun 08 2015 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jun 08 2015
STATUS
approved