login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126343
Triangle, read by rows, of the limit of coefficients of q in {[x^m] W(x,q)} as m grows when arranged into a triangle where row n is multiplied by n! for n>=1.
5
1, 1, 2, 7, 12, 12, 85, 88, 130, 152, 1071, 1140, 1665, 1845, 2430, 16891, 21786, 24501, 32066, 36066, 45222, 363378, 450506, 509110, 631883, 718914, 866306, 991571, 9545369, 10821336, 13004356, 14732096, 17438450, 19851112, 23380260, 26447976
OFFSET
1,3
EXAMPLE
The function W that satisfies: W(x,q) = exp( q*x*W(q*x,q) ) begins:
W(x,q) = 1 + q*x + (1/2 + q)*q^2*x^2 +
(1/6 + 1*q + 1/2*q^2 + 1*q^3)*q^3*x^3 +
(1/24 + 1/2*q + 1*q^2 + 7/6*q^3 + 1*q^4 + 1/2*q^5 + 1*q^6)*q^4*x^4 +...
Coefficients of q in {[x^n] W(x,q)} tend to a limit when read backwards:
n=1: (1/2 + q)*q^2 read backwards: [1, 1/2];
n=2: (1/6 + 1*q + 1/2*q^2 + 1*q^3)*q^3 read backwards: [1, 1/2, 1, 1/6];
n=3: (1/24 + 1/2*q + 1*q^2 + 7/6*q^3 + 1*q^4 + 1/2*q^5 + 1*q^6)*q^4 read backwards: [1, 1/2, 1, 7/6, 1, 1/2, 1/24].
The limit of fractional coefficients may be formed into a triangle:
1,
1/2, 1,
7/6, 2, 2,
85/24, 11/3, 65/12, 19/3,
357/40, 19/2, 111/8, 123/8, 81/4, 16891/720, ...
When row n=1,2,3,.. is multiplied by n! we obtain this integer triangle:
1;
1, 2;
7, 12, 12;
85, 88, 130, 152;
1071, 1140, 1665, 1845, 2430;
16891, 21786, 24501, 32066, 36066, 45222;
363378, 450506, 509110, 631883, 718914, 866306, 991571;
9545369, 10821336, 13004356, 14732096, 17438450, 19851112, 23380260, 26447976;
279725995, 316750608, 368695521, 417632601, 484621893, 546334029, 632562585, 713249235, 820357488;
9251279911, 10612100290, 11923578775, 13648746400, 15329052835, 17462968972, 19598497945, 22282099420, 24949824310, 28305482450; ...
CROSSREFS
Cf. A126341, A126342, A126265; A126344 (column 1), A126345 (diagonal), A126346 (row sums).
Sequence in context: A064441 A110949 A226703 * A344951 A174539 A049409
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 25 2006
STATUS
approved