login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126265 Triangle of coefficients of q in e.g.f. that satisfies: A(x,q) = exp( q*x*A(q*x,q) ), read by rows of [n*(n-1)/2 + 1] terms in row n for n>=0. 7
1, 1, 1, 2, 1, 6, 3, 6, 1, 12, 24, 28, 24, 12, 24, 1, 20, 90, 140, 245, 120, 240, 140, 120, 60, 120, 1, 30, 240, 660, 1320, 1626, 1920, 2100, 1560, 1830, 1440, 1440, 840, 720, 360, 720, 1, 42, 525, 2450, 6195, 12432, 15127, 23310, 21000, 26250, 19320, 26502, 19320 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Row sums equals A000272(n) = (n+1)^(n-1). Last term in rows are the factorials. Coefficients of q in {[x^n] A(x,q)} when read backward converge to the sequence: [1,1/2,1,7/6,2,2,85/24,11/3,65/12,19/3,357/40,19/2,111/8,123/8,81/4,...].

LINKS

Paul D. Hanna, Rows n=0..18, flattened.

FORMULA

G.f.: A(x,q) = Sum_{n>=0} (x^n/n!)*q^n*Sum_{k=0..n*(n-1)/2} T(n,k)*q^k.

EXAMPLE

G.f.: A(x,q) = 1 + q*x + (1 + 2*q)*q^2*x^2/2! +

(1 + 6*q + 3*q^2 + 6*q^3)*q^3*x^3/3! +

(1 + 12*q + 24*q^2 + 28*q^3 + 24*q^4 + 12*q^5 + 24*q^6)*q^4*x^4/4! +...

Triangle begins:

1;

1;

1, 2;

1, 6, 3, 6;

1, 12, 24, 28, 24, 12, 24;

1, 20, 90, 140, 245, 120, 240, 140, 120, 60, 120;

1, 30, 240, 660, 1320, 1626, 1920, 2100, 1560, 1830, 1440, 1440, 840, 720, 360, 720; ...

PROG

(PARI) {T(n, k)=local(A=x); for(i=1, n, A=x*exp(subst(A, x, q*x+x*O(x^n)))); if(k>n*(n-1)/2|k<0, 0, Vec(Vec(A)[n+1]*n!+q*O(q^(n*(n+1)/2)))[k+1])}

for(n=0, 9, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))

CROSSREFS

Cf. A000272 (row sums); diagonals: A126266, A126267.

Sequence in context: A171178 A100014 A062566 * A124441 A026191 A050137

Adjacent sequences:  A126262 A126263 A126264 * A126266 A126267 A126268

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Dec 22 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 05:11 EST 2016. Contains 278748 sequences.