login
Binomial transform of A107430.
1

%I #10 Jul 03 2017 08:03:12

%S 1,2,1,4,3,2,8,7,9,3,16,15,28,16,6,32,31,75,55,40,10,64,63,186,156,

%T 165,75,20,128,127,441,399,546,336,175,35,256,255,1016,960,1596,1176,

%U 896,336,70,512,511,2295,2223,4320,3564,3528,1848,756,126,1024,1023,5110,5020,11115,9855,11880,7680,4620,1470,252

%N Binomial transform of A107430.

%C Row sums = powers of 3.

%F Given M = A107430 as an infinite lower triangular matrix and P = Pascal's triangle, A126136 = P*M.

%e First few rows of the triangle are:

%e 1;

%e 2, 1;

%e 4, 3, 2;

%e 8, 7, 9, 3;

%e 16, 15, 28, 16, 6;

%e 32, 31, 75, 55, 40, 10;

%e ...

%o (PARI) tabl(nn) = {p = matrix(nn+1, nn+1, n, k, binomial(n-1, k-1)); m = matrix(nn+1, nn+1, n, k, if (k<=n, binomial(n-1, (k-1)\2), 0)); r = p*m; for (n=0, nn, for (k=0, n, print1(r[n+1,k+1], ", ");); print(););} \\ _Michel Marcus_, Jul 03 2017

%Y Cf. A107430.

%Y Columns : A000079, A000225, A058877, A027540

%K nonn,tabl

%O 0,2

%A _Gary W. Adamson_, Dec 18 2006

%E More terms from _Philippe Deléham_, Jul 02 2017