This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107430 Triangle read by rows: row n is row n of Pascal's triangle (A007318) sorted into increasing order. 11
 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 6, 1, 1, 5, 5, 10, 10, 1, 1, 6, 6, 15, 15, 20, 1, 1, 7, 7, 21, 21, 35, 35, 1, 1, 8, 8, 28, 28, 56, 56, 70, 1, 1, 9, 9, 36, 36, 84, 84, 126, 126, 1, 1, 10, 10, 45, 45, 120, 120, 210, 210, 252, 1, 1, 11, 11, 55, 55, 165, 165, 330, 330, 462, 462, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS By rows, equals partial sums of A053121 reversed rows. Example: Row 4 of A053121 = (2, 0, 3, 0, 1) -> (1, 0, 3, 0, 2) -> (1, 1, 4, 4, 6). - Gary W. Adamson, Dec 28 2008, edited by Michel Marcus, Sep 22 2015 LINKS Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened FORMULA T(n,k) = C(n,floor(k/2)). - Paul Barry, Dec 15 2006; corrected by Philippe Deléham, Mar 15 2007 Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A127363(n), A127362(n), A127361(n), A126869(n), A001405(n), A000079(n), A127358(n), A127359(n), A127360(n)for n=-4,-3,-2,-1,0,1,2,3,4 respectively. - Philippe Deléham, Mar 29 2007 EXAMPLE Triangle begins: 1; 1,1; 1,1,2; 1,1,3,3; 1,1,4,4,6; MAPLE for n from 0 to 10 do sort([seq(binomial(n, k), k=0..n)]) od; # yields sequence in triangular form. - Emeric Deutsch, May 28 2005 MATHEMATICA Flatten[ Table[ Sort[ Table[ Binomial[n, k], {k, 0, n}]], {n, 0, 12}]] (* Robert G. Wilson v, May 28 2005 *) PROG (Haskell) import Data.List (sort) a107430 n k = a107430_tabl !! n !! k a107430_row n = a107430_tabl !! n a107430_tabl = map sort a007318_tabl -- Reinhard Zumkeller, May 26 2013 (MAGMA) /* As triangle */ [[Binomial(n, Floor(k/2)) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 22 2015 (PARI) for(n=0, 20, for(k=0, n, print1(binomial(n, floor(k/2)), ", "))) \\ G. C. Greubel, May 22 2017 CROSSREFS A061554 is similar but with rows sorted into decreasing order. Cf. A034868. Cf. A053121. - Gary W. Adamson, Dec 28 2008 Cf. A103284. Sequence in context: A096589 A176427 A099573 * A255741 A132892 A174448 Adjacent sequences:  A107427 A107428 A107429 * A107431 A107432 A107433 KEYWORD nonn,tabl,easy AUTHOR Philippe Deléham, May 21 2005 EXTENSIONS More terms from Emeric Deutsch and Robert G. Wilson v, May 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 19:24 EDT 2018. Contains 316237 sequences. (Running on oeis4.)