login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107430 Triangle read by rows: row n is row n of Pascal's triangle (A007318) sorted into increasing order. 11
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 6, 1, 1, 5, 5, 10, 10, 1, 1, 6, 6, 15, 15, 20, 1, 1, 7, 7, 21, 21, 35, 35, 1, 1, 8, 8, 28, 28, 56, 56, 70, 1, 1, 9, 9, 36, 36, 84, 84, 126, 126, 1, 1, 10, 10, 45, 45, 120, 120, 210, 210, 252, 1, 1, 11, 11, 55, 55, 165, 165, 330, 330, 462, 462, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

By rows, equals partial sums of A053121 reversed rows. Example: Row 4 of A053121 = (2, 0, 3, 0, 1) -> (1, 0, 3, 0, 2) -> (1, 1, 4, 4, 6). - Gary W. Adamson, Dec 28 2008, edited by Michel Marcus, Sep 22 2015

LINKS

Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(n,k) = C(n,floor(k/2)). - Paul Barry, Dec 15 2006; corrected by Philippe Deléham, Mar 15 2007

Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A127363(n), A127362(n), A127361(n), A126869(n), A001405(n), A000079(n), A127358(n), A127359(n), A127360(n)for n=-4,-3,-2,-1,0,1,2,3,4 respectively. - Philippe Deléham, Mar 29 2007

EXAMPLE

Triangle begins:

1;

1,1;

1,1,2;

1,1,3,3;

1,1,4,4,6;

MAPLE

for n from 0 to 10 do sort([seq(binomial(n, k), k=0..n)]) od; # yields sequence in triangular form. - Emeric Deutsch, May 28 2005

MATHEMATICA

Flatten[ Table[ Sort[ Table[ Binomial[n, k], {k, 0, n}]], {n, 0, 12}]] (* Robert G. Wilson v, May 28 2005 *)

PROG

(Haskell)

import Data.List (sort)

a107430 n k = a107430_tabl !! n !! k

a107430_row n = a107430_tabl !! n

a107430_tabl = map sort a007318_tabl

-- Reinhard Zumkeller, May 26 2013

(MAGMA) /* As triangle */ [[Binomial(n, Floor(k/2)) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 22 2015

(PARI) for(n=0, 20, for(k=0, n, print1(binomial(n, floor(k/2)), ", "))) \\ G. C. Greubel, May 22 2017

CROSSREFS

A061554 is similar but with rows sorted into decreasing order.

Cf. A034868.

Cf. A053121. - Gary W. Adamson, Dec 28 2008

Cf. A103284.

Sequence in context: A096589 A176427 A099573 * A255741 A132892 A174448

Adjacent sequences:  A107427 A107428 A107429 * A107431 A107432 A107433

KEYWORD

nonn,tabl,easy

AUTHOR

Philippe Deléham, May 21 2005

EXTENSIONS

More terms from Emeric Deutsch and Robert G. Wilson v, May 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 19:24 EDT 2018. Contains 316237 sequences. (Running on oeis4.)