This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126026 Conjectured upper bound on area of the convex hull of any edge-to-edge connected system of regular unit hexagons (n-polyhexes). 1
 0, 1, 2, 4, 5, 8, 10, 13, 17, 20, 24, 28, 33, 38, 43, 49, 55, 61, 68, 75, 82, 90, 97, 106, 114, 123, 133, 142, 152, 162, 173, 184, 195, 207, 219, 231, 244, 257, 270, 284, 297, 312, 326, 341, 357, 372, 388, 404, 421, 438, 455, 473, 491, 509, 528, 547, 566 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Kurz proved the polyomino equivalent of this conjecture as A122133 and abstracts: "In this article we prove a conjecture of Bezdek, Brass and Harborth concerning the maximum volume of the convex hull of any facet-to-facet connected system of n unit hypercubes in the d-dimensional Euclidean space. For d=2 we enumerate the extremal polyominoes and determine the set of possible areas of the convex hull for each n." LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Sascha Kurz, Convex hulls of polyominoes, arXiv:math/0702786 [math.CO], Feb 26 2007. See conjecture 2, p. 12. Eric Weisstein's World of Mathematics, Polyhex. Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1). FORMULA a(n) = floor((n^2 + 14*n/3 + 1)/6). G.f.: x*(1 +x^2)*(1 -x^3 +2*x^4 -x^6 +x^7 +x^11 -x^13 +x^14 +x^15 -x^16) / ((1 -x)^3*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -x^3 +x^6)*(1 +x^3 +x^6)). - Colin Barker, Oct 13 2016 EXAMPLE a(10) = 24 because floor((10^2 + 14*10/3 + 1)/6) = floor(24.6111111) = 24. MATHEMATICA Table[Floor[(n^2+14n/3+1)/6], {n, 0, 80}] (* Harvey P. Dale, Apr 11 2012 *) PROG (PARI) concat(0, Vec(x*(1 +x^2)*(1 -x^3 +2*x^4 -x^6 +x^7 +x^11 -x^13 +x^14 +x^15 -x^16) / ((1 -x)^3*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -x^3 +x^6)*(1 +x^3 +x^6)) + O(x^50))) \\ Colin Barker, Oct 13 2016 (PARI) a(n) = (n^2 + 14*n/3 + 1)\6 \\ Charles R Greathouse IV, Oct 13 2016 CROSSREFS Cf. A000228, A036359, A002216, A005963, A001998, A018190, A001207, A057973, A122133. Sequence in context: A231056 A000549 A191985 * A199425 A057129 A036404 Adjacent sequences:  A126023 A126024 A126025 * A126027 A126028 A126029 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Feb 27 2007 EXTENSIONS More terms from Harvey P. Dale, Apr 11 2012 Offset changed to 0 by Colin Barker, Oct 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.