

A126026


Conjectured upper bound on area of the convex hull of any edgetoedge connected system of regular unit hexagons (npolyhexes).


0



0, 1, 2, 4, 5, 8, 10, 13, 17, 20, 24, 28, 33, 38, 43, 49, 55, 61, 68, 75, 82, 90, 97, 106, 114, 123, 133, 142, 152, 162, 173, 184, 195, 207, 219, 231, 244, 257, 270, 284, 297, 312, 326, 341, 357, 372, 388, 404, 421, 438, 455, 473, 491, 509, 528, 547, 566
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Kurz proved the polyomino equivalent of this conjecture as A122133 and abstracts: "In this article we prove a conjecture of Bezdek, Brass and Harborth concerning the maximum volume of the convex hull of any facettofacet connected system of n unit hypercubes in the ddimensional Euclidean space. For d=2 we enumerate the extremal polyominoes and determine the set of possible areas of the convex hull for each n."


LINKS

Table of n, a(n) for n=1..57.
Sascha Kurz, Convex hulls of polyominoes, 26 Feb 2007, Conjecture 2, p. 12.
Eric Weisstein's World of Mathematics, Polyhex.


FORMULA

a(n) = Floor((n^2 + 14*n/3 + 1)/6).


EXAMPLE

a(10) = 24 because floor((10^2 + 14*10/3 + 1)/6) = floor(24.6111111) = 24.


MATHEMATICA

Table[Floor[(n^2+14n/3+1)/6], {n, 0, 80}] (* Harvey P. Dale, Apr 11 2012 *)


CROSSREFS

Cf. A000228, A036359, A002216, A005963, A000228, A001998, A018190, A001207, A057973, A122133.
Sequence in context: A231056 A000549 A191985 * A199425 A057129 A036404
Adjacent sequences: A126023 A126024 A126025 * A126027 A126028 A126029


KEYWORD

easy,nonn


AUTHOR

Jonathan Vos Post, Feb 27 2007


EXTENSIONS

More terms from Harvey P. Dale, Apr 11 2012


STATUS

approved



