The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001207 Number of fixed hexagonal polyominoes with n cells.
(Formerly M2897 N1162)
1, 3, 11, 44, 186, 814, 3652, 16689, 77359, 362671, 1716033, 8182213, 39267086, 189492795, 918837374, 4474080844, 21866153748, 107217298977, 527266673134, 2599804551168, 12849503756579, 63646233127758, 315876691291677, 1570540515980274, 7821755377244303, 39014584984477092, 194880246951838595, 974725768600891269, 4881251640514912341, 24472502362094874818, 122826412768568196148, 617080993446201431307, 3103152024451536273288, 15618892303340118758816, 78679501136505611375745 (list; graph; refs; listen; history; text; internal format)



The Voege-Guttmann paper extends the series to n=35. - Markus Voege (markus.voege(AT)inria.fr), Mar 25 2004


A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, p. 477. (Table 16.9 has 46 terms of this sequence.)

W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


Vaclav Kotesovec, Table of n, a(n) for n = 1..46 (from reference by A. J. Guttmann)

Moa Apagodu, Counting hexagonal lattice animals, arXiv:math/0202295 [math.CO], 2002-2009.

Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016.

M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers, Discrete Mathematics, Volume 258, Issues 1-3, 6 December 2002, Pages 235-274.

Stephan Mertens, Markus E. Lautenbacher, Counting lattice animals: a parallel attack, J. Statist. Phys. 66 (1992), no. 1-2, 669-678.

H. Redelmeier, Emails to N. J. A. Sloane, 1991

M. F. Sykes, M. Glen. Percolation processes in two dimensions. I. Low-density series expansions, J. Phys A 9 (1) (1976) 87.

Markus Voege and Anthony J. Guttmann, On the number of hexagonal polyominoes, Theoretical Computer Sciences, 307(2) (2003), 433-453.


Sequence in context: A167013 A121220 A068091 * A319156 A026887 A151106

Adjacent sequences:  A001204 A001205 A001206 * A001208 A001209 A001210




N. J. A. Sloane.


3 more terms and reference from Achim Flammenkamp, Feb 15 1999

More terms from Markus Voege (markus.voege(AT)inria.fr), Mar 25 2004



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)