login
A124800
Let M be a diagonal matrix with A007442 on the diagonal and P = Pascal's triangle as an infinite lower triangular matrix. Now read the triangle P*M by rows.
0
2, 2, 1, 2, 2, 1, 2, 3, 3, -1, 2, 4, 6, -4, 3, 2, 5, 10, -10, 15, -9, 2, 6, 15, -20, 45, -54, 23, 2, 7, 21, -35, 105, -189, 161, -53, 2, 8, 28, -56, 210, -504, 644, -424, 115, 2, 9, 36, -84, 378, -1134, 1932, -1908, 1035, -237, 2, 10, 45, -120, 630, -2268, 4830, -6360, 5175, -2370, 457
OFFSET
1,1
COMMENTS
Row sums = primes.
Right border = A007442, (2, 1, 1, -1, 3, -9...), = inverse binomial transform of the primes.
FORMULA
p(x,n)=Sum[Prime[k + 1]*Binomial[n,k]*x^k*(1 - x)^(n - k), {k, 0, n}]; t(n,m)=coefficients(p(x,n)). - Roger L. Bagula and Gary W. Adamson, Oct 01 2008
EXAMPLE
Row 5: sum = 11 = p5 since (2 + 4 + 6 - 4 + 3) = 11.
Triangle begins:
{2},
{2, 1},
{2, 2, 1},
{2, 3, 3, -1},
{2, 4, 6, -4, 3},
{2, 5, 10, -10, 15, -9},
{2, 6, 15, -20, 45, -54, 23},
{2, 7, 21, -35, 105, -189, 161, -53},
{2, 8, 28, -56, 210, -504, 644, -424, 115},
{2, 9, 36, -84, 378, -1134, 1932, -1908, 1035, -237},
{2, 10, 45, -120, 630, -2268, 4830, -6360, 5175, -2370, 457}
...
MATHEMATICA
Clear[p, x, n, m]; Sum[Prime[k + 1]*Binomial[n, k]*x^k*(1 - x)^(n - k), {k, 0, n}]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; Flatten[%] - Roger L. Bagula and Gary W. Adamson, Oct 01 2008
CROSSREFS
Cf. A007442.
Sequence in context: A024327 A073044 A361870 * A247349 A069163 A025260
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Nov 07 2006
EXTENSIONS
More terms from Roger L. Bagula and Gary W. Adamson, Oct 01 2008
STATUS
approved